Research Bits: August 1


Thinner, tougher heat flux sensors Researchers from the Department of Physics at the University of Tokyo have designed a heat flux sensor that can measure heat flux — the amount of heat that passes through a material — using a manufacturable, flexible thin film with circuits etched in a way that increases the anomalous Nernst effect (ANE). ANE turns heat into an electrical signal using ... » read more

Antenna For Nanoscale Light Source By Placing The TMD Outside The Tunnelling Pathway


A technical paper titled "Exciton-assisted electron tunnelling in van der Waals heterostructures" was published by researchers at ETH Zürich, The Barcelona Institute of Science and Technology, Swiss Federal Laboratories for Materials Science and Technology, National Institute for Materials Science, University of Basel, and Institució Catalana de Recerca i Estudis Avançats (ICREA). Abstract:... » read more

Research Bits: July 5


UTe2 breakthrough for quantum computing Scientists from the Macroscopic Quantum Matter Group laboratory at the University College Cork (UCC) in Ireland discovered a spatially modulating superconducting state in the superconductor uranium ditelluride (UTe2) that could be useful as in topological quantum computing. Using a powerful quantum microscope, the team found that the some of the electro... » read more

Research Bits: May 16


Germanium-tin transistor Scientists at Forschungszentrum Jülich, CEA-Leti, University of Leeds, Leibniz Institute for High Performance Microelectronics, and RWTH Aachen University fabricated a new type of transistor from a germanium-tin alloy. Charge carriers can move faster in the material than in silicon or germanium, which enables lower voltages in operation. “The germanium–tin syst... » read more

Optimizing The Growth And Transfer Process of Graphene (Cambridge, RWTH Aachen)


A technical paper titled "Putting High-Index Cu on the Map for High-Yield, Dry-Transferred CVD Graphene" was published by researchers at University of Cambridge, RWTH Aachen University, and National Institute for Materials Science. Abstract: "Reliable, clean transfer and interfacing of 2D material layers are technologically as important as their growth. Bringing both together remains a ch... » read more

Large Area Synthesis of 2D Material Hexagonal Boron Nitride, Improving Device Characteristics of Graphene


A new technical paper titled "Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays" was published by researchers at Kyushu University, National Institute of Advanced Industrial Science and Technology (AIST), and Osaka University. Abstract "Multilayer hexagonal boron nitride (hBN) can be used to preserve the intrinsic physical properti... » read more

Looking Forward To SPIE, And Beyond


On the eve of this year’s SPIE Advanced Lithography + Patterning conference, I took a look at the IEEE Devices and Systems Roadmap’s lithography section. It’s especially notable for the emergence of EUV lithography, which has quickly become critical for advanced logic. High-NA tools to support still smaller dimensions are on the horizon. In the near-term, though, the key challenge is not ... » read more

Wafer Scale Transfer of 2D Materials, Graphene


A new technical paper titled "Assessment of Wafer-Level Transfer Techniques of Graphene with Respect to Semiconductor Industry Requirements" was published by researchers at Infineon Technologies AG, RWTH Aachen University, Protemics, and Advantest. Abstract "Graphene is a promising candidate for future electronic applications. Manufacturing graphene-based electronic devices typically requ... » read more

New Technique For Making Thin Films of Perovskite Oxide Semiconductors


A technical paper titled "Freestanding epitaxial SrTiO3  nanomembranes via remote epitaxy using hybrid molecular beam epitaxy" was published by researchers at University of Minnesota Twin Cities, Pacific Northwest National Laboratory, and University of Wisconsin–Madison. The researchers developed a new technique for making thin films of perovskite oxide semiconductors.  The development c... » read more

Graphene-Based Electronics (Georgia Tech)


A technical paper titled "An epitaxial graphene platform for zero-energy edge state nanoelectronics" was published by researchers at Georgia Tech, Tianjin University, CNRS, Synchrotron SOLEIL, National High Magnetic Field Laboratory and others. “Graphene’s power lies in its flat, two-dimensional structure that is held together by the strongest chemical bonds known,” said Walter de Heer... » read more

← Older posts Newer posts →