More 2.5D/3D, Fan-Out Packages Ahead


A new wave of 2.5D/3D, fan-out and other advanced IC packages is expected to flood the market over the next year. The new packages are targeted to address many of the same and challenging applications in the market, such as multi-die integration, memory bandwidth issues and even chip scaling. But the new, advanced IC packages face some technical challenges. And cost remains an issue as advan... » read more

Looking Beyond The CPU


CPUs no longer deliver the same kind of of performance improvements as in the past, raising questions across the industry about what comes next. The growth in processing power delivered by a single CPU core began stalling out at the beginning of the decade, when power-related issues such as heat and noise forced processor companies to add more cores rather than pushing up the clock frequency... » read more

Blog Review: June 6


In a video, Cadence's Marc Greenberg discusses the advantages and trade-offs of HBM2 and GDDR6, two advanced memory interfaces targeted to the high-performance computing market. Synopsys' Ravindra Aneja takes a look at what's needed for AI-focused hardware designs and how formal can help with the necessary data path verification. In a video, Mentor's Colin Walls explains the challenges of... » read more

Choosing The Right Interconnect


Efforts to zero in on cheaper advanced packaging approaches that can speed time to market are being sidetracked by a dizzying number of choices. At the center of this frenzy of activity is the [getkc id="36" kc_name="interconnect"]. Current options range from organic, silicon and glass interposers, to bridges that span different die at multiple levels. There also are various fan-out approach... » read more

How To Choose The Right Memory


When it comes to designing memory, there is no such thing as one size fits all. And given the long list of memory types and usage scenarios, system architects must be absolutely clear on the system requirements for their application. A first decision is whether or not to put the memory on the logic die as part of the SoC, or keep it as off-chip memory. "The tradeoff between latency and th... » read more

In Case You Missed It


We recently held two very successful seminars in Tokyo and Shanghai. Samsung Memory presented their HBM2 solutions, Samsung Foundry talked about their advanced 14nm FinFET solutions, ASE Group reviewed their advanced 2.5D packaging solutions, eSilicon presented our ASIC and 2.5D design/implementation and IP solutions, Rambus detailed their high-performance SerDes solutions and Northwest Logic p... » read more

Predictions: Manufacturing, Devices And Companies


Some predictions are just wishful thinking, but most of these are a lot more thoughtful. They project what needs to happen for various markets or products to become successful. Those far reaching predictions may not fully happen within 2018, but we give everyone the chance to note the progress made towards their predictions at the end of the year. (See Reflection On 2017: Design And EDA and Man... » read more

What’s Next?


We just concluded two very successful seminars in Tokyo and Shanghai. Samsung Memory presented their HBM2 solutions, Samsung Foundry talked about their advanced 14nm FinFET solutions, ASE Group reviewed their advanced 2.5D packaging solutions, eSilicon presented our ASIC and 2.5D design/implementation and IP solutions, Rambus detailed their high-performance SerDes solutions and Northwest Logic ... » read more

Pushing DRAM’s Limits


If humans ever do create a genuinely self-aware artificial intelligence, it may well exhibit the frustration of waiting for data arrive. The access bandwidth of DRAM-based computer memory has improved by a factor of 20x over the past two decades. Capacity increased 128x during the same period. But latency improved only 1.3x, according to Kevin Chang, a researcher at Carnegie Mellon Universit... » read more

Move Data Or Process In Place?


Should data move to available processors or should processors be placed close to memory? That is a question the academic community has been looking at for decades. Moving data is one of the most expensive and power-consuming tasks, and is often the limiter to system performance. Within a chip, Moore's Law has enabled designers to physically move memory closer to processing, and that has rema... » read more

← Older posts