中文 English

Research Bits: June 8


Five-second coherence for silicon carbide qubits Researchers from the University of Chicago, National Institutes for Quantum Science and Technology, and Linköping University built a qubit from silicon carbide and was able to retain its coherence, or the length of time the quantum state persists, for over five seconds. “It’s uncommon to have quantum information preserved on these human ... » read more

Research Bits: April 26


Photonic quantum computers Researchers from Stanford University propose a simpler design method for photonic quantum computers. The proposed design uses a laser to manipulate a single atom that, in turn, can modify the state of the photons via a phenomenon called “quantum teleportation.” The atom can be reset and reused for many quantum gates, eliminating the need to build multiple distinc... » read more

Manufacturing Bits: Jan. 26


EU FIB project The European Union (EU) has launched a new project to develop next-generation structures and materials using focused ion beam (FIB) systems. The EU project, dubbed Focused Ion Technology for Nanomaterials or FIT4NANO, is spearheaded by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) organization. The project aims to bring European researchers and companies together to develop... » read more

Power/Performance Bits: Feb. 25


Thinner, flexible touchscreens Researchers from RMIT University, University of New South Wales, and Monash University developed a thin, flexible electronic material for touchscreens. The material is 100 times thinner than current touchscreen materials. The new screens are still based on indium-tin oxide (ITO), a common touchscreen material. However, a liquid metal printing approach was used... » read more

Power/Performance Bits: Jan. 10


Antiferromagnetic magnetoelectric RAM Researchers at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Swiss Nanoscience Institute, and the University of Basel developed a concept for a new, low power memory chip. In particular, the group focused on finding an alternative to MRAM using magnetoelectric antiferromagnets, which are activated by an electrical voltage rather than by a current. "... » read more

Power/Performance Bits: Nov. 15


Another record-breaking tandem perovskite solar cell University of California, Berkeley, and Lawrence Berkeley National Laboratory scientists report a new design for perovskite solar cells that achieves an average steady-state efficiency of 18.4%, with a high of 21.7% and a peak efficiency of 26%. "This has a great potential to be the cheapest photovoltaic on the market, plugging into any... » read more

Power/Performance Bits: July 26


Flexible MRAM Researchers from the National University of Singapore, Yonsei University, Ghent University and Singapore's Institute of Materials Research and Engineering embedded a magnetic memory chip on a plastic material, flexible enough to be bent into a tube. The new device operates on magnetoresistive random access memory (MRAM), which uses a magnesium oxide (MgO)-based magnetic tunn... » read more

Power/Performance Bits: Feb. 2


Single electron transistors A group coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) is setting out on a four year program to develop single electron transistors fully compatible with CMOS technology and capable of room temperature operation. The single electron transistor (SET) switches electricity by means of a single electron. The SET is based on a quantum dot (consisting... » read more

Power/Performance Bits: Nov. 3


Lithium-air batteries gain ground Scientists at the University of Cambridge have developed a working laboratory demonstration of a lithium-oxygen battery which has very high energy density, is more than 90% efficient, and can be recharged more than 2000 times. Their demonstrator relies on a highly porous, 'fluffy' carbon electrode made from graphene (comprising one-atom-thick sheets of ca... » read more