Technical Paper Round-Up: March 22


New memories, materials, and transistor types, and processes for making those devices, highlighted the past week's technical papers. That includes everything from vertical MoS2 to programmable black phosphorus image sensors and photonic lift-off processes for flexible thin-film materials. Papers continue to flow from all parts of the supply chain, with some new studies out of Pakistan, Seoul... » read more

NAND and NOR logic-in-memory comprising silicon nanowire feedback field-effect transistors


Abstract: "The processing of large amounts of data requires a high energy efficiency and fast processing time for high-performance computing systems. However, conventional von Neumann computing systems have performance limitations because of bottlenecks in data movement between separated processing and memory hierarchy, which causes latency and high power consumption. To overcome this hindra... » read more

SOT-MRAM To Challenge SRAM


In an era of new non-volatile memory (NVM) technologies, yet another variation is poised to join the competition — a new version of MRAM called spin-orbit torque, or SOT-MRAM. What makes this one particularly interesting is the possibility that someday it could supplant SRAM arrays in systems-on-chip (SoCs) and other integrated circuits. The key advantages of SOT-MRAM technology are the pr... » read more

Power/Performance Bits: Jan. 10


Muscle-tracking clothing Researchers from the University of Utah and Gyeongsang National University developed a low-cost bioelectrical sensor that can be integrated into clothing. The sensor measures electromyography (EMG) signals that are generated in muscles when they contract. EMG signals are useful for studying muscle fatigue and recovery and could potentially be used to inform diagnosi... » read more

Spin–orbit torque engineering in β-W/CoFeB heterostructures with W–Ta or W–V alloy layers between β-W and CoFeB


Abstract "The spin–orbit torque (SOT) resulting from a spin current generated in a nonmagnetic transition metal layer offers a promising magnetization switching mechanism for spintronic devices. To fully exploit this mechanism, in practice, materials with high SOT efficiencies are indispensable. Moreover, new materials need to be compatible with semiconductor processing. This study introduce... » read more

Power/Performance Bits: June 22


Terahertz silicon multiplexer Researchers from Osaka University and University of Adelaide designed a silicon multiplexer for terahertz-range communications in the 300-GHz band. “In order to control the great spectral bandwidth of terahertz waves, a multiplexer, which is used to split and join signals, is critical for dividing the information into manageable chunks that can be more easily... » read more

Shared-Write-Channel-Based Device for High-Density Spin-Orbit-Torque Magnetic Random-Access Memory


ABSTRACT "Spin-orbit-torque (SOT) devices are promising candidates for the future magnetic memory landscape, as they promise high endurance, low read disturbance, and low read error, in comparison with spin-transfer torque devices. However, SOT memories are area intensive due to the requirement for two access transistors per bit. Here, we report a multibit SOT cell that has a single write chan... » read more

Manufacturing Bits: April 28


Gate-all-around reliability The 2020 IEEE International Reliability Physics Symposium (IRPS) will kick off this week, this time as a virtual event. IRPS is a conference that focuses on the latest research in microelectronics reliability. The event starts off with keynotes from Infineon, Intel and Texas Instruments. IRPS also involves a multitude of papers and presentations. On the logi... » read more

Power/Performance Bits: Jan. 8


Ferrimagnetic memory Engineers at the National University of Singapore, Toyota Technological Institute, and Korea University propose a new type of spintronic memory that is 20 times more efficient and 10 times more stable than commercial ones. In spintronic devices, data is stored depending on up or down magnetic states. Current devices based on ferromagnets, however, suffer from a few issu... » read more

System Bits: Nov. 27


Silent, lightweight aircraft powered by ionic wind Instead of propellers or turbines, MIT researchers have built and flown the first-ever aircraft with no moving parts that is powered by an “ionic wind” — a silent but mighty flow of ions that is produced aboard the plane, and that generates enough thrust to propel the plane over a sustained, steady flight. [caption id="attachment_2414... » read more

← Older posts Newer posts →