Domain-Specific Memory


Domain-specific computing may be all the rage, but it is avoiding the real problem. The bigger concern is the memories that throttle processor performance, consume more power, and take up the most chip area. Memories need to break free from the rigid structures preferred by existing software. When algorithms and memory are designed together, improvements in performance are significant and pr... » read more

An Integrated Approach To Power Domain And CDC Verification


Reducing power consumption is essential for both mobile and data center applications. Yet it is a challenge to lower power while minimally impacting performance. The solution has been to partition designs into multiple power domains which allow selectively reducing voltage levels or powering off partitions. Traditional low power verification validates only the functional correctness of power... » read more

Timing Challenges In The Age Of AI Hardware


In recent years, we have seen a clear market trend towards dedicated integrated circuits (ASICs) that are much more efficient in performance and energy consumption than traditional general-purpose computers for processing AI workloads. These AI accelerators harden deep learning algorithm kernels into circuits, enable higher data ingestion bandwidth with local memory, and perform massively paral... » read more

Design Support For A Green IoT


By Dirk Mayer and Roland Jancke The Internet of Things (IoT) is growing rapidly all around the world. New devices are continually being added, all collecting a variety of data and transmitting them (often wirelessly) to edge devices, which in turn relay the data to the cloud for further processing. It is estimated that in a few years IoT devices will be responsible for over 20% of global ene... » read more

The Many Flavors Of UPF: Which Is Right For Your Design?


Energy efficient electronic systems require sophisticated power management architectures that present difficult low-power verification challenges. Accellera introduced the Unified Power Format (UPF) standard in 2007 to help engineers deal with these complex issues. To keep pace with the growing complexity of low-power designs, the UPF standard has itself continued to evolve through the relea... » read more

Usage Models Driving Data Center Architecture Changes


Data center architectures are undergoing a significant change, fueled by more data and much greater usage from remote locations. Part of this shift involves the need to move some processing closer to the various memory hierarchies, from SRAM to DRAM to storage. There is more data to process, and it takes less energy and time to process that data in place. But workloads also are being distrib... » read more

Know Your Own Power, Early And Accurately


By Taruna Reddy and Vin Liao Chip designers have always had to balance timing and area. Everyone wants a design as fast as possible and as compact as possible, but these two goals are usually in conflict. For the last couple of decades, minimal power consumption has been a third goal, often of equal importance. Some of the biggest drivers for the semiconductor industry are battery operated p... » read more

Fast, Low-Power Inferencing


Power and performance are often thought of as opposing goals, opposite sides of the same coin if you will. A system can be run really fast, but it will burn a lot of power. Ease up on the accelerator and power consumption goes down, but so does performance. Optimizing for both power and performance is challenging. Inferencing algorithms for Convolutional Neural Networks (CNN) are compute int... » read more

Low Power Still Leads, But Energy Emerges As Future Focus


In 2021 and beyond, chips used in smartphones, digital appliances, and nearly all major applications will need to go on a diet. As the amount of data being generated continues to swell, more processors are being added everywhere to sift through that data to determine what's useful, what isn't, and how to distribute it. All of that uses power, and not all of it is being done as efficiently as... » read more

Detecting Electrical Hazards Incurred By Inter-Voltage Domain Crossing In Custom SRAMs


Fast-growing markets, such as 5G, biotechnology, AI, and automotive, are driving a new wave of low-power semiconductor design requirements and, hence, more aggressive low-power management techniques are needed. Consequently, even large macros within a chip, such as SRAMs, now feature multiple voltage domains to limit power draw during light-sleep, deep-sleep, and shutdown-low-power modes. These... » read more

← Older posts Newer posts →