Nightmare Fuel: The Hazards Of ML Hardware Accelerators


A major design challenge facing numerous silicon design teams in 2023 is building the right amount of machine learning (ML) performance capability into today’s silicon tape out in anticipation of what the state of the art (SOTA) ML inference models will look like in 2026 and beyond when that silicon will be used in devices in volume production. Given the continuing rapid rate of change in mac... » read more

Using Machine Learning To Increase Yield And Lower Packaging Costs


Packaging is becoming more and more challenging and costly. Whether the reason is substrate shortages or the increased complexity of packages themselves, outsourced semiconductor assembly and test (OSAT) houses have to spend more money, more time and more resources on assembly and testing. As such, one of the more important challenges facing OSATs today is managing die that pass testing at the ... » read more

Autonomous Driving: End-to-End Surround 3D Camera Perception System (NVIDIA)


A new technical paper titled "NVAutoNet: Fast and Accurate 360∘ 3D Visual Perception For Self Driving" was published by researchers at NVIDIA. Abstract "Robust real-time perception of 3D world is essential to the autonomous vehicle. We introduce an end-to-end surround camera perception system for self-driving. Our perception system is a novel multi-task, multi-camera network which takes a... » read more

Overview of Machine Learning Algorithms Used In Hardware Security (TU Delft)


A new technical paper titled "A Survey on Machine Learning in Hardware Security" was published by researchers at TU Delft. Abstract "Hardware security is currently a very influential domain, where each year countless works are published concerning attacks against hardware and countermeasures. A significant number of them use machine learning, which is proven to be very effective in ... » read more

Google’s TPU v4 Architecture: 3 Major Features


A new technical paper titled "TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning with Hardware Support for Embeddings" was published by researchers at Google. Abstract: "In response to innovations in machine learning (ML) models, production workloads changed radically and rapidly. TPU v4 is the fifth Google domain specific architecture (DSA) and its third supercomputer f... » read more

Combination of AI Techniques To Find The Best Ways to Place Transistors on Silicon Chips


A new technical paper titled "AutoDMP: Automated DREAMPlace-based Macro Placement" was published by researchers at NVIDIA. Abstract: "Macro placement is a critical very large-scale integration (VLSI) physical design problem that significantly impacts the design power-performance-area (PPA) metrics. This paper proposes AutoDMP, a methodology that leverages DREAMPlace, a GPU-accelerated place... » read more

AI Becoming More Prominent In Chip Design


Semiconductor Engineering sat down to talk about the role of AI in managing data and improving designs, and its growing role in pathfinding and preventing silent data corruption, with Michael Jackson, corporate vice president for R&D at Cadence; Joel Sumner, vice president of semiconductor and electronics engineering at National Instruments; Grace Yu, product and engineering manager at Meta... » read more

Hardware Based Monitoring For Zero Trust Environments


A technical paper titled "Towards Hardware-Based Application Fingerprinting with Microarchitectural Signals for Zero Trust Environments" was published by the Air Force Institute of Technology. Abstract "The interactions between software and hardware are increasingly important to computer system security. This research collects sequences of microprocessor control signals to develop machine ... » read more

Looking Beyond TOPS/W: How To Really Compare NPU Performance


There is a lot more to understanding the true capabilities of an AI engine beyond TOPS per watt. A rather arbitrary measure of the number of operations of an engine per unit of power, the TOPS/W metric completely misses the point that a single operation on one engine may accomplish more useful work than a multitude of operations on another engine. In any case, TOPS/W is by no means the only spe... » read more

How AI Drives Faster Verification Coverage And Debug For First-Time-Right Silicon


By Taruna Reddy and Robert Ruiz These days, the question is less about what AI can do and more about what it can’t do. From talk-of-the-town chatbots like ChatGPT to self-driving cars, AI is becoming pervasive in our everyday lives. Even industries where it was perhaps an unlikely fit, like chip design, are benefiting from greater intelligence. What if one of the most laborious, time-co... » read more

← Older posts Newer posts →