Multifunctional Materials Enable Single-Layer Temporary Bonding And Debonding


Many new wafer-level packaging (WLP) technologies involve the processing of thin wafers that must be mechanically supported during the manufacturing flow. These technologies include fan-out wafer-level packaging (FOWLP), fan-in wafer-level chip-scale packaging (FI-WLCSP), 3-D FOWLP, 2.5-D integration with interposer technology, and true 3-D IC integration using through-silicon via (TSV) interco... » read more

A Different Kind Of Material World


The semiconductor manufacturing world is poised for big change, and the driver will be materials. Materials always have been a critical factor in semiconductors. Silicon is so important that an entire region of California is named after it. Rare earths have raised fears about nationalistic monopolies. And the shift from aluminum to copper interconnects at 130nm caused one of the most painful... » read more

Using Sensor Data To Improve Yield And Uptime


Semiconductor equipment vendors are starting to add more sensors into their tools in an effort to improve fab uptime and wafer yield, and to reduce cost of ownership and chip failures. Massive amounts of data gleaned from those tools is expected to provide far more detail than in the past about multiple types and sources of variation, including when and where that variation occurred and how,... » read more

Reliability Becomes The Top Concern In Automotive


Reliability is emerging as the top priority across the hottest growth markets for semiconductors, including automotive, industrial and cloud-based computing. But instead of replacing chips every two to four years, some of those devices are expected to survive for up to 20 years, even with higher usage in sometimes extreme environmental conditions. This shift in priorities has broad ramificat... » read more

Keeping Up Power And Performance With Cobalt


Chip designers require simultaneous improvements in “PPAC”: power, performance and area/cost (Fig. 1). Achieving these improvements is becoming increasingly difficult as classic Moore's Law scaling slows. What's needed is a new playbook for the industry consisting of new materials, new architectures, new 3D structures within the chip, new methods to shrink feature geometries, and advanced p... » read more

The Next Semiconductor Revolution


What will drive the next semiconductor revolution? When you ask people with decades of experience in semiconductor manufacturing and software development, the answers include everything from AI and materials to neuromorphic architectures. Federico Faggin, designer of the world's first microprocessor; Terry Brewer, president and CEO of Brewer Science; Sanjay Natarajan, corporate vice presi... » read more

Planarization Challenges At 7nm And Beyond


Dan Sullivan, executive director of semiconductor technology at Brewer Science, digs into the challenges of planarizing a thin film on a wafer for etch and optical control. The problem becomes more difficult at advanced nodes because the films are thinner. https://youtu.be/iNA6EGpoYZU     _________________________________ See more tech talk videos here   » read more

The Next Materials Race


Trade wars are costly on many fronts, and a trade war between the United States and China is bound to cause a variety of problems that no one anticipated. But in some areas, there may be a silver lining. And where there is no silver lining available, other materials may suffice. For decades, big chipmakers have been squeezing the entire semiconductor supply chain in a race to double the num... » read more

The Big Data Shift Has Started


Terry Brewer, president and CEO of Brewer Science, sat down with Semiconductor Engineering to talk about different priorities for private and public companies, why AI completely changes the game for technology companies, and what impact materials will have on innovation and design in the future. SE: What are the next big opportunities for Brewer Science? Brewer: There are broad opportunit... » read more

Looking For The Next Big Innovation


Never has there been more demand for “The Big Innovation” — one that moves the needle for performance, power and area-cost (PPAC) in a big way — as there is in the current era of AI and machine learning (ML). As summarized in Why AI Workloads Require New Computing Architectures, AI workloads require new architectures to process data. These workloads also call for heterogeneous comp... » read more

← Older posts Newer posts →