Combating Counterfeit Semiconductors In The Military Supply Chain


The reality: semiconductors are often counterfeits. In most current implementations, semiconductor authenticity is practically impossible to guarantee. The counterfeit market for semiconductors is real, sizable and growing: • 2012: According to a report produced by the Senate Armed Services Committee, more than 1,000,000 suspect counterfeit electronic components have been used in 1,800 sep... » read more

IP Security In FPGAs


Quinn Jacobson, strategic architect at Achronix, talks about security in FPGAs, including how to prevent reverse engineering of IP, how to make sure the design is authentic, and how to limit access to IP in transit and in the chip. » read more

Quality Issues Widen


As the amount of semiconductor content in cars, medical and industrial applications increases, so does the concern about how long these devices will function properly—and what exactly that means. Quality is frequently a fuzzy concept. In mobile phones, problems have ranged from bad antenna placement, which resulted in batteries draining too quickly, to features that take too long to load. ... » read more

Automating Inter-Layer In-Design Checks In Rigid-Flex PCBs


Flexible PCBs (flex/rigid-flex) make it possible to create a variety of products that require small form factors and light weight, such as wearable, mobile, military, and medical devices. As flexible PCB fabrication technology has matured in response to demands for smaller, lighter products, new design challenges have emerged. This paper discusses some of the key challenges to address and also ... » read more

RF GaN Gains Steam


The RF [getkc id="217" kc_name="gallium nitride"] (GaN) device market is heating up amid the need for more performance with better power densities in a range of systems, such as infrastructure equipment, missile defense and radar. On one front, for example, RF GaN is beginning to displace a silicon-based technology for the power amplifier sockets in today’s wireless base stations. GaN is m... » read more

Manufacturing Bits: May 5


Transparent armor The U.S. Naval Research Laboratory (NRL) has developed transparent armor. The technology is actually a hard transparent ceramic, based on a material called spinel. Spinel is a magnesium aluminate compound. Spinel is also a gemstone, which could come in various colors. NRL has devised a fabrication process to create the technology, which is harder and superior to glass, sap... » read more