Confusion Grows Over Packaging And Scaling


The push toward both multi-chip packaging and continued scaling of digital logic is creating confusion about how to classify designs, what design tools work best, and how to best improve productivity and meet design objectives. While the goals of design teams remains the same — better performance, lower power, lower cost — the choices often involve tradeoffs between design budgets and ho... » read more

System-Level Packaging Tradeoffs


Leading-edge applications such as artificial intelligence, machine learning, automotive, and 5G, all require high bandwidth, higher performance, lower power and lower latency. They also need to do this for the same or less money. The solution may be disaggregating the SoC onto multiple die in a package, bringing memory closer to processing elements and delivering faster turnaround time. But ... » read more

‘More Than Moore’ Reality Check


The semiconductor industry is embracing multi-die packages as feature scaling hits the limits of physics, but how to get there with the least amount of pain and at the lowest cost is a work in progress. Gaps remain in tooling and methodologies, interconnect standards are still being developed, and there are so many implementations of packaging that the number of choices is often overwhelming. ... » read more

Scaling Up And Down


You don’t have to look very far in the semiconductor world before you see the word “scaling.” Perhaps you read an industry news article headline about transistor scaling – how those nearly nanoscale components are shrinking even smaller in size down to the atomic scale. Or maybe you heard a reference to memory capacity scaling – how our favorite mobile devices can store more high-reso... » read more

New Metrology and Inspection Technologies Needed for More-Than-Moore Markets


The escalating costs of following Moore’s Law have shifted the semiconductor industry’s focus to More-than-Moore (MtM) technologies, where analog/mixed-signal, RF, MEMS, image sensing, power or other technologies may be integrated with CMOS in a variety of planar, 2.5D and 3D architectures. The integration of these and other key technologies is enabling a host of fast-growing application... » read more

The Impact of Moore’s Law Ending


Over the past couple of process nodes the chip industry has come to grips with the fact that Moore's Law is slowing down or ending for many market segments. What isn't clear is what comes next, because even if chipmakers stay at older nodes they will face a series of new challenges that will drive up costs and increase design complexity. Chip design has faced a number of hurdles just to get ... » read more

Fostering Thermal Design Innovation Using Chip-Package-System Analysis Techniques


As devices continue to become smaller and more portable Moore’s Law continues to increase the number of transistors that fit within a chip albeit many predict an end to this in the near future. However new interconnect technologies that use Through-Silicon-Vias (TSVs) can place ICs next to each other using 2.5D Interposers or stack chips in 3D resulting in even greater system scaling. This co... » read more

Reworking Established Nodes


New technology markets and a flattening in smartphone growth has sparked a resurgence in older technology processes. For many of these up-and-coming applications, there is no compelling reason to migrate to the latest process node, and equipment companies and fabs are rushing to fill the void. As with all electronic devices, the focus is on cost-cutting. But because these markets are likely ... » read more

Will Higher Production Costs Hamper IoT Growth?


No question, 2017 is expected to be a good year for the semiconductor industry. Semiconductor revenues for 2017 are expected to increase more than 9% this year. A 6% increase in unit sales, as well as higher average selling prices for memory products, will help drive the revenue growth rate to its highest level since 2010. Wafer demand is forecast to grow by almost 8%. The higher revenue growth... » read more

Will There Be Enough Silicon Wafers?


The silicon wafer industry, a critical part of the IC supply chain, is undergoing a new and perhaps alarming wave of merger and acquisition activity. While consolidation in this sector is not new, the pace of M&A activity is picking up and there are fewer companies left. Silicon wafer makers produce and sell raw silicon wafers to chipmakers, which process them into chips. But despite con... » read more

← Older posts