True 3D-IC Problems


Placing logic on logic may sound like a small step, but several problems must be overcome to make it a reality. True 3D involves wafers stacked on top of each other in a highly integrated manner. This is very different from 2.5D integration, where logic is placed side-by-side, connected by an interposer. And there are some intermediate solutions today where significant memory is stacked on l... » read more

Challenges With Stacking Memory On Logic


Experts at the Table: Semiconductor Engineering sat down to discuss the changes in design tools and methodologies needed for 3D-ICs, with Sooyong Kim, director and product specialist for 3D-IC at Ansys; Kenneth Larsen, product marketing director at Synopsys; Tony Mastroianni, advanced packaging solutions director at Siemens EDA; and Vinay Patwardhan, product management group director at Cadence... » read more

Model Variation And Its Impact On Cell Characterization


EDA (Electronic Design Automation) cell characterization tools have been used extensively to generate models for timing, power and noise at a rapidly growing number of process corners. Today, model variation has become a critical component of cell characterization. Variation can impact circuit timing due to process, voltage, and temperature changes and can lead to timing violations, resulting i... » read more

No Two Chips Are Alike


As semiconductor processes continue to shrink it’s becoming increasingly challenging to manage the parameters of individual devices not only across the diameter of the wafer, but also across the length of a single chip, especially for a complex chip with a large area. Today’s standard approach to this problem is to assume the worst case and to create a sub-optimal design that accommodates t... » read more

Tech Talk: On-Chip Variation


Raymond Nijssen, vice president of systems engineering at Achronix, discusses on-chip and process variation at 7nm and 5nm, the role of embedded FPGAs, and how to reduce margin and pessimistic designs. https://youtu.be/LQnw_3H9soQ » read more

Addressing Process Variation And Reducing Timing Pessimism At 16nm And Below


At 16nm and below, on-chip variation (OCV) becomes a critically important issue. Increasing process variation makes a larger impact on timing, which becomes more pronounced in low-power designs with ultra-low voltage operating conditions. In this paper, we will discuss how a new methodology involving more accurate library characterization and variation modeling can reduce timing margins in libr... » read more

Multi-Source CTS Delivers Flexible High Performance and Variation Tolerance


Multi-source clock tree is a hybrid containing the best aspects of a conventional clock tree and a pure clock mesh. This paper illustrates the benefits such as lower skew and better on-chip-variation (OCV) performance compared to a conventional clock tree. To download this white paper, click here. » read more