Research Bits: Aug. 7


Stretchy semiconductors Researchers from Pennsylvania State University, University of Houston, Southeast University, and Northwestern University are working towards fully flexible electronics. “Such technology requires stretchy elastic semiconductors, the core material needed to enable integrated circuits that are critical to the technology enabling our computers, phones and so much more,... » read more

Week In Review: Design, Low Power


Cadence will acquire Rambus' SerDes and memory interface PHY IP business. Rambus will retain its digital IP business, including memory and interface controllers and security IP. “With this transaction, we will increase our focus on market-leading digital IP and chips and expand our roadmap of novel memory solutions to support the continued evolution of the data center and AI,” said Sean Fan... » read more

Chip Industry’s Technical Paper Roundup: Apr. 25


New technical papers recently added to Semiconductor Engineering’s library: [table id=94 /] If you have research papers you are trying to promote, we will review them to see if they are a good fit for our global audience. At a minimum, papers need to be well researched and documented, relevant to the semiconductor ecosystem, and free of marketing bias. There is no cost involved for us ... » read more

Spiking Neural Networks: Hardware & Algorithm Developments


A new technical paper titled "Exploring Neuromorphic Computing Based on Spiking Neural Networks: Algorithms to Hardware" was published by researchers at Purdue University, Pennsylvania State University, and Yale University. Excerpt from Abstract: "In this article, we outline several strides that neuromorphic computing based on spiking neural networks (SNNs) has taken over the recent past, a... » read more

Research Bits: Jan. 24


Transistor-free compute-in-memory Researchers from the University of Pennsylvania, Sandia National Laboratories, and Brookhaven National Laboratory propose a transistor-free compute-in-memory (CIM) architecture to overcome memory bottlenecks and reduce power consumption in AI workloads. "Even when used in a compute-in-memory architecture, transistors compromise the access time of data," sai... » read more

Research Bits: Jan. 9


Making stretchy semiconductors Researchers from Pennsylvania State University, University of Houston, Purdue University, and Texas Heart Institute developed a new method to make soft, stretchable transistors easier and cheaper to manufacture. The lateral phase separation induced micromesh (LPSM) process involves mixing a semiconductor and an elastomer and spin coating the liquid mixture pre... » read more

Hardware Encryption: Ultra-compact Active Interconnect Based on FeFET


New technical paper "Hardware functional obfuscation with ferroelectric active interconnects" from researchers at Penn State, Rochester Institute of Technology, GlobalFoundries Fab1, North Dakota State University. Abstract "Existing circuit camouflaging techniques to prevent reverse engineering increase circuit-complexity with significant area, energy, and delay penalty. In this paper, we... » read more

Academic Research Paper Round-Up: April 13


The volume of research into advanced semiconductors is rising and widening. The latest batch includes hybrid power-gating architecture, RRAM devices models, improved FMEA, quantum machine learning, enhanced nonlinear optics, harvesting energy after sundown, direct chemisorption-assisted nanotransfer printing, and more. Topping the list of researchers this week are ETH Zurich, Stanford Unive... » read more

Quantum Machine Learning: Security Threats & Lines Of Defense


New research paper from Pennsylvania State University explores quantum machine learning (QML) and its use in hardware security. Find the technical paper here. April 2022. Satwik Kundu and Swaroop Ghosh. 2022. Security Aspects of Quantum Machine Learning: Opportunities, Threats and Defenses (Invited). In Proceedings of the Great Lakes Symposium on VLSI 2022 (GLSVLSI ’22), June 6–8,... » read more

Microstructural impacts on ionic conductivity of oxide solid electrolytes from a combined atomistic-mesoscale approach


Academic paper from Lawrence Livermore National Laboratory (LLNL) scientists in collaboration with San Francisco State University and the The Pennsylvania State University. Abstract "Although multiple oxide-based solid electrolyte materials with intrinsically high ionic conductivities have emerged, practical processing and synthesis routes introduce grain boundaries and other interfaces t... » read more

← Older posts Newer posts →