PF-DRAM: A Precharge-Free DRAM Structure


Authors: Nezam Rohbani † (IPM); Sina Darabii § (Sharif); Hamid Sarbazi-Azad † i §(Sharif / IPM): † School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran § Department of Computer Engineering, Sharif University of Technology, Tehran, Iran Abstract: "Although DRAM capacity and bandwidth have increased sharply by the advances in technology ... » read more

Know Your Own Power, Early And Accurately


By Taruna Reddy and Vin Liao Chip designers have always had to balance timing and area. Everyone wants a design as fast as possible and as compact as possible, but these two goals are usually in conflict. For the last couple of decades, minimal power consumption has been a third goal, often of equal importance. Some of the biggest drivers for the semiconductor industry are battery operated p... » read more

Addressing Power Challenges In AI Hardware


Artificial intelligence (AI) accelerators are essential for tackling AI workloads like neural networks. These high-performance parallel computation machines provide the processing efficiency that such high data volumes demand. With AI playing increasingly larger roles in our lives—from consumer devices like smart speakers to industrial applications like automated factories—it’s paramount ... » read more

Von Neumann Upset


My recent article about the von Neumann architecture received some quite passionate responses, including one that thought I was attempting to slight the person. That was most certainly not the intent, given that the invention enabled a period of very rapid advancement in computers and technology in general. The process of invention and engineering are both quite similar and yet different. In... » read more

Maximizing Value Post-Moore’s Law


When Moore's Law was in full swing, almost every market segment considered moving to the next available node as a primary way to maximize value. But today, each major market segment is looking at different strategies that are more closely aligned with its individual needs. This diversity will end up causing both pain and opportunities in the supply chain. Chip developers must do more with a ... » read more

Power Dissipation Of The Network-On-Chip In A System-on-Chip For MPEG-4 Video Encoding


An oldie but a goodie: Explains power benefits of NoC technology by characterizing a multi-processor system-on-chip (MPSoC) for MPEG4, AVC/H.264 encoding. Explains NoC power model used to analyze power consumption and dissipation. Includes: Description of multi-processor system-on-chip (MPSoC) for Multi-Processor System-on-Chip (MPSoC) for MPEG4, AVC/H.264 encoding Explanation of N... » read more

Static Verification Of Low Power Designs


Are there any chips designed today that don’t have limitations on their power consumption? For smartphones and tablets, increasing the time between charges is a clear product differentiator and a frequent design goal. Power consumption is also an issue for Internet-of-Things (IoT) devices, many of which are in inaccessible locations where battery replacement or recharge is difficult. Even com... » read more

Reducing Software Power


With the slowdown of Moore's Law, every decision made in the past must be re-examined to get more performance or lower power for a given function. So far, software has remained relatively unaffected, but it could be an untapped area for optimization and enable significant power reduction. The general consensus is that new applications such as artificial intelligence and machine learning, whe... » read more

Accurate Power Analysis Using Real Software Workloads


Over the last decade or so, power consumption has become a major issue in the design of many types of electronic products. Of course, power has always mattered for battery-operated devices, but the complexity of portable electronics and the size of the chips they contain have grown significantly. For plugged-in devices, from desktop computers to server racks in a data center, power plays a majo... » read more

Target: 50% Reduction In Memory Power


Memory consumes about 50% or more of the area and about 50% of the power of an SoC, and those percentages are likely to increase. The problem is that static random access memory (SRAM) has not scaled in accordance with Moore's Law, and that will not change. In addition, with many devices not chasing the latest node and with power becoming an increasing concern, the industry must find ways to... » read more

← Older posts Newer posts →