Predicting Reliability At 3/2nm And Beyond


The chip industry is determined to manufacture semiconductors at 3/2nm — and maybe even beyond — but it's unlikely those chips will be the complex all-in-one SoCs that have defined advanced electronics over the past decade or so. Instead, they likely will be one of many tiles in a system that define different functions, the most important of which are highly specialized for a particular app... » read more

Silicon Lifecycle Management


How do you track, measure and ensure reliability over the lifetime of a chip, regardless of how or where it is used? Steve Pateras, senior director of marketing for test products at Synopsys, drills down into the impact of hardware-software co-design, over-the-air updates, the expected lifetime of designs, and how the various monitors and sensors are used to track environmental, structural and ... » read more

Using AI And Bugs To Find Other Bugs


Debug is starting to be rethought and retooled as chips become more complex and more tightly integrated into packages or other systems, particularly in safety- and mission-critical applications where life expectancy is significantly longer. Today, the predominant bug-finding approaches use the ubiquitous constrained random/coverage driven verification technology, or formal verification techn... » read more

Structural Integrity Of Chips


A new challenge is on the horizon, and it's one that could have some interesting consequences for chip design — structural integrity. Ever since the introduction of finFETs and 3D NAND, the lines have been blurring between electrical and mechanical engineering. After some initial reports of fins collapsing or breaking, and variable distances between layers, chipmakers figured out how to so... » read more

Selective Redundancy In Cars


The automotive industry has been fish-tailing its way through design strategies and electronics architectures, but it finally appears to be honing in on a strategy that actually might work. This doesn't mean fully autonomous vehicles will take over the road anytime soon, but at least it points carmakers in the right direction. The auto industry has been in panic mode ever since Tesla, Waymo,... » read more

Does HW Vs. SW Choice Affect Quality And Reliability?


Electronic systems comprise both hardware and software. Which functions are implemented with hardware and which with software are decisions made based upon a wide variety of considerations, including concerns about quality and reliability. Hardware may intrinsically provide for higher device quality, but it is also the source of reliability concerns. This is in contrast with popular views of... » read more

Chips Good Enough To Bet Your Life On


Semiconductor Engineering sat down to discuss automotive electronics reliability with Jay Rathert, senior director of strategic collaborations at KLA; Dennis Ciplickas, vice president of advanced solutions at PDF Solutions; Uzi Baruch, vice president and general manager of the automotive business unit at OptimalPlus; Gal Carmel, general manager of proteanTecs' Automotive Division; Andre van de ... » read more

Dealing With Two Very Different Sides Of 5G


Semiconductor Engineering sat down to discuss 5G reliability with Anthony Lord, director of RF product marketing at FormFactor; Noam Brousard, system vice president at proteanTecs; Andre van de Geijn, business development manager at yieldHUB; and David Hall, head of semiconductor marketing at National Instruments. What follows are excerpts of that conversation. To view part one of this discussi... » read more

Making Chips To Last Their Expected Lifetimes


Chips are supposed to last their lifetime, but that expectation varies greatly depending upon the end market, whether the device is used for safety- or mission-critical applications, and even whether it can be easily replaced or remotely fixed. It also depends on how those chips are used, whether they are an essential part of a complex system, and whether the cost of continual monitoring and... » read more

Reliability Over Time And Space


The demand for known good die is well understood as multi-chip packages are used in safety-critical and mission-critical applications, but that alone isn't sufficient. As chips are swapped in and out of packages to customize them for specific applications, it will be the entire module that needs to be verified, simulated and tested, and analyzed. This is more complicated than it sounds for s... » read more

← Older posts Newer posts →