The MCU Dilemma


The humble microcontroller is getting squeezed on all sides. While most of the semiconductor industry has been able to take advantage of Moore's Law, the MCU market has faltered because flash memory does not scale beyond 40nm. At the same time, new capabilities such as voice activation and richer sensor networks are requiring inference engines to be integrated for some markets. In others, re... » read more

Manufacturing Bits: Dec. 16


Imec-Leti alliance At the recent IEEE International Electron Devices Meeting (IEDM), Imec and Leti announced plans to collaborate in select areas. The two R&D organizations plan to collaborate in two areas—artificial intelligence (AI) and quantum computing. Imec and Leti have been separately working on AI technologies based on various next-generation memory architectures. Both entitie... » read more

DRAM Scaling Challenges Grow


DRAM makers are pushing into the next phase of scaling, but they are facing several challenges as the memory technology approaches its physical limit. DRAM is used for main memory in systems, and today’s most advanced devices are based on roughly 18nm to 15nm processes. The physical limit for DRAM is somewhere around 10nm. There are efforts in R&D to extend the technology, and ultimate... » read more

Utilizing Computational Memory


For systems to become faster and consume less power, they must stop wasting the power required to move data around and start adding processing near memory. This approach has been proven, and products are entering the marketplace designed to fill a number of roles. Processing near memory, also known as computational memory, has been hiding in the shadows for more than a decade. Ever since the... » read more

Magnetic Memories Reach For Center Stage


Wearable heart rate sensors. Networked smoke detectors. Smart lighting. Smart doorbells. While desktop computers and even smartphones are powerful standalone tools, Internet of Things devices share a need to collect data from the environment, store it, and transmit it to some other device for action or further analysis. In many systems, data storage and working memory account for the majorit... » read more

The Next New Memories


Several next-generation memory types are ramping up after years of R&D, but there are still more new memories in the research pipeline. Today, several next-generation memories, such as MRAM, phase-change memory (PCM) and ReRAM, are shipping to one degree or another. Some of the next new memories are extensions of these technologies. Others are based on entirely new technologies or involve ar... » read more

Cloudy Outlook Seen For IC Biz


After a slowdown in the first half of 2019, chipmakers and equipment vendors face a cloudy outlook for the second half of this year, with a possible recovery in 2020. Generally, the semiconductor industry began to see a slowdown starting in mid- to late-2018, which extended into the first half of 2019. During the first half of this year, memory and non-memory vendors were negatively impacted... » read more

Using Memory Differently To Boost Speed


Boosting memory performance to handle a rising flood of data is driving chipmakers to explore new memory types and different ways of using existing memory, but it also is creating some complex new challenges. For most of the semiconductor design industry, memory has been a non-issue for the past couple of decades. The main concerns were price and size, but memory makers have been more than a... » read more

Process Control For Next-Generation Memories


The Internet of Things (IoT), Big Data and Artificial Intelligence (AI) are driving the need for higher speeds and more power-efficient computing. The industry is responding by bringing new memory technologies to the marketplace. Three new types of memory in particular—MRAM (magnetic random access memory), PCRAM (phase change RAM) and ReRAM (resistive RAM)—are emerging as leading candidat... » read more

Will In-Memory Processing Work?


The cost associated with moving data in and out of memory is becoming prohibitive, both in terms of performance and power, and it is being made worse by the data locality in algorithms, which limits the effectiveness of cache. The result is the first serious assault on the von Neumann architecture, which for a computer was simple, scalable and modular. It separated the notion of a computatio... » read more

← Older posts Newer posts →