The Evolution Of High-Level Synthesis


High-level synthesis is getting yet another chance to shine, this time from new markets and new technology nodes. But it's still unclear how fully this technology will be used. Despite gains, it remains unlikely to replace the incumbent RTL design methodology for most of the chip, as originally expected. Seen as the foundational technology for the next generation of EDA companies around the ... » read more

Divided On System Partitioning


Building an optimal implementation of a system using a functional description has been an industry goal for a long time, but it has proven to be much more difficult than it sounds. The general idea is to take software designed to run on a processor and to improve performance using various types of alternative hardware. That performance can be specified in various ways and for specific applic... » read more

Improving Algorithms With High-Level Synthesis


Most computer algorithms today are developed in high-level languages on general-purpose computers. But someday they may be deployed in embedded systems where the development, verification, and validation of algorithms is done in languages like python, Java, C++, or even numerical frameworks like MatLab. This is the goal of high-level synthesis (HLS), and it aims to solve a fundamental proble... » read more

Week In Review: Design, Low Power


M&A Intel acquired Habana Labs, a maker of programmable deep learning accelerators for the data center, for approximately $2 billion. Based in Israel, Habana was founded in 2016 but only emerged from stealth in September 2018 with the release of its first inference chip. Intel's VC arm, Intel Capital, previously invested in the startup. Intel has made numerous M&A moves in the AI space... » read more

What Worked, What Didn’t In 2019


2019 has been a tough year for semiconductor companies from a revenue standpoint, especially for memory companies. On the other hand, the EDA industry has seen another robust growth year. A significant portion of this disparity can be attributed to the number of emerging technology areas for semiconductors, none of which has reached volume production yet. Some markets continue to struggle, a... » read more

Kahn Process Network: Parallel Programming Without Races And Non-Determinism


Modern personal computing devices feature multiple cores. This is not only true for desktops, laptops, tablets and smartphones, but also for small embedded devices like the Raspberry Pi. In order to exploit the computational power of those platforms, application programmers are forced to write their code in a parallel way. Most often, they use the threading approach. This means multiple parts o... » read more

Accelerating Financial Applications With SLX FPGA


This white paper demonstrates how engineers creating FPGA-based hardware accelerators for financial market models can take advantage of SLX FPGA. SLX FPGA can be used to accelerate optimization efforts for financial market models targeting option pricing. In this paper, two implementations of computation intensive models for pricing options are discussed, namely the Black-Scholes and Heston pri... » read more

Service Revenue Growing With Chip Complexity


Rising complexity, new markets, and a shortage of in-house expertise are beginning to rekindle demand for services for the first time in nearly a decade. The semiconductor industry has been racing to design chips for a variety of new and existing applications, but they are facing challenges on a number of fronts: Leading-edge chips require new architectures due to a sharp reduction in s... » read more

Rapid Evolution For Verification Plans


Verification plans are rapidly evolving from mechanisms to track verification progress into multi-faceted coordination vehicles for several teams with disparate goals, using complex resource management spread across multiple abstractions and tools. New system demands from industries such as automotive are forcing tighter integration of those plans with requirements management and product lif... » read more

Using HLS To Improve Algorithms


Can an HLS optimization tool outperform expert-level hand-optimizations? A recently published white paper examines how SLX FPGA is used to optimize a secure hash algorithm. T the results are compared to a competition-winning hand-optimized HLS implementation of the same algorithm. This approach provides a nearly 400x speed-up over the unoptimized implementation and even outperforms the hand ... » read more

← Older posts