Research Bits: Aug. 8


Speeding NVM encryption Researchers from North Carolina State University propose a way to speed up encryption and file system performance for non-volatile memory (NVM). “NVMs are an emerging technology that allows rapid access to the data, and retains data even when a system crashes or loses power,” said Amro Awad, an assistant professor of electrical and computer engineering at North C... » read more

New Way To Control Spin Currents At Room Temperature


New technical paper titled "Spin manipulation by giant valley-Zeeman spin-orbit field in atom-thick WSe2." from researchers at Beihang University (China) and University of British Columbia. Abstract: "The phenomenon originating from spin–orbit coupling provides energy-efficient strategies for spin manipulation and device applications. The broken inversion symmetry interface and the result... » read more

3 Emerging Technologies: Memristors, Spintronics & 2D Materials


New technical paper titled "Memristive, Spintronic, and 2D-Materials-Based Devices to Improve and Complement Computing Hardware" from researchers at University College London and University of Cambridge. Abstract "In a data-driven economy, virtually all industries benefit from advances in information technology—powerful computing systems are critically important for rapid technological pr... » read more

Neuromorphic Computing: Challenges, Opportunities Including Materials, Algorithms, Devices & Ethics


This new research paper titled "2022 roadmap on neuromorphic computing and engineering" is from numerous researchers at Technical University of Denmark, Instituto de Microelectrónica de Sevilla, CSIC, University of Seville, and many others. Partial Abstract: "The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the chall... » read more

Novel Spintronic Neuro-mimetic Device Emulating the LIF Neuron Dynamics w/High Energy Efficiency & Compact Footprints


New technical paper titled "Noise resilient leaky integrate-and-fire neurons based on multi-domain spintronic devices" from researchers at Purdue University. Abstract "The capability of emulating neural functionalities efficiently in hardware is crucial for building neuromorphic computing systems. While various types of neuro-mimetic devices have been investigated, it remains challenging to... » read more

Current Knowledge & Future Development In 2D Magnetic Materials Research


Abstract: "Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D... » read more

Spin–orbit torque engineering in β-W/CoFeB heterostructures with W–Ta or W–V alloy layers between β-W and CoFeB


Abstract "The spin–orbit torque (SOT) resulting from a spin current generated in a nonmagnetic transition metal layer offers a promising magnetization switching mechanism for spintronic devices. To fully exploit this mechanism, in practice, materials with high SOT efficiencies are indispensable. Moreover, new materials need to be compatible with semiconductor processing. This study introduce... » read more

Field-free spin-orbit torque-induced switching of perpendicular magnetization in a ferrimagnetic layer with a vertical composition gradient


Abstract "Current-induced spin-orbit torques (SOTs) are of interest for fast and energy-efficient manipulation of magnetic order in spintronic devices. To be deterministic, however, switching of perpendicularly magnetized materials by SOT requires a mechanism for in-plane symmetry breaking. Existing methods to do so involve the application of an in-plane bias magnetic field, or incorporation o... » read more

Shared-Write-Channel-Based Device for High-Density Spin-Orbit-Torque Magnetic Random-Access Memory


ABSTRACT "Spin-orbit-torque (SOT) devices are promising candidates for the future magnetic memory landscape, as they promise high endurance, low read disturbance, and low read error, in comparison with spin-transfer torque devices. However, SOT memories are area intensive due to the requirement for two access transistors per bit. Here, we report a multibit SOT cell that has a single write chan... » read more

Power/Performance Bits: Jan. 11


Quantum dot transistors Researchers at Los Alamos National Laboratory and University of California Irvine used quantum dots to create transistors which can be assembled into functional logic circuits. "Potential applications of the new approach to electronic devices based on non-toxic quantum dots include printable circuits, flexible displays, lab-on-a-chip diagnostics, wearable devices, me... » read more

← Older posts Newer posts →