The Next New Memories


Several next-generation memory types are ramping up after years of R&D, but there are still more new memories in the research pipeline. Today, several next-generation memories, such as MRAM, phase-change memory (PCM) and ReRAM, are shipping to one degree or another. Some of the next new memories are extensions of these technologies. Others are based on entirely new technologies or involve ar... » read more

Week in Review: IoT, Security, Auto


Products/Services Rambus agreed to acquire Hillsboro, Ore.-based Northwest Logic, a purveyor of memory, PCIe, and MIPI digital controllers. The transaction is expected to close in the current quarter. Financial terms weren’t disclosed; Rambus said in a statement, “Although this transaction will not materially impact 2019 results due to the expected timing of close and acquisition accountin... » read more

System Bits: July 30


A camera that sees around corners Researchers at Stanford University developed a camera system that can detect moving objects around a corner, looking at single particles of light reflected on a wall. “People talk about building a camera that can see as well as humans for applications such as autonomous cars and robots, but we want to build systems that go well beyond that,” said Gordon... » read more

System Bits: July 23


Superconductivity seen in trilayer graphene Stanford University and University of California at Berkeley researchers discovered signs of superconductivity in stacking three-layer sheets of graphene, they report. “It’s definitely an exciting development,” says Cory Dean, a physicist at Columbia University. Dean notes that bilayer graphene superconducts only when the atomic lattices of ... » read more

System Bits: July 15


Automating bridge inspections with robotics The University of Waterloo has come up with robotics that could be used in automated inspection of bridges, making sure such critical infrastructure is safe and sound. The technology promises to make bridge inspection cheaper and easier. The system collects data for defect detection and analysis through a combination of autonomous robots, cameras,... » read more

System Bits: July 10


Light waves run on silicon-based chips Researchers at the University of Sydney’s Nano Institute and Singapore University of Technology and Design collaborated on manipulating light waves on silicon-based microchips to keep coherent data as it travels thousands of miles on fiber-optic cables. Such waves—whether a tsunami or a photonic packet of information—are known as solitons. The... » read more

System Bits: June 10


SlothBot swings through the trees, slowly A robot that doesn’t often move, spending its days, weeks, months, in the forest canopy, monitoring the local environment – that’s SlothBot, from the Georgia Institute of Technology. The robot has two photovoltaic solar panels for its power source. It is designed to stay in the trees for months at a time. It’s gone through trials on the Geor... » read more

Manufacturing Bits: May 21


World’s loudest underwater sound A group of researchers hit tiny jets of water with a high-power X-ray laser, creating a record for the world’s loudest underwater sound. The intensity of the blast resulted in an underwater sound with an intensity greater than 270 decibels (dB). That’s greater than the intensity of a rocket launch or equivalent of creating electrical power for a city o... » read more

Manufacturing Bits: May 6


Ionic memory Sandia National Laboratories, Stanford University and the University of Massachusetts at Amherst have developed an ionic floating-gate memory array (IFG) for neuromorphic computing. For some time, the industry has been working on neuromorphic computing. The goal of neuromorphic computing is to replicate the brain in silicon. In a neuromorphic chip, the goal is to mimic the way ... » read more

System Bits: May 6


Transmitting data with a semiconductor laser Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences demonstrated a laser that can emit microwaves wirelessly, modulate them, and receive external radio frequency signals. “The research opens the door to new types of hybrid electronic-photonic devices and is the first step toward ultra-high-speed Wi-Fi,” said ... » read more

← Older posts