Challenges Grow For CD-SEMs At 5nm And Beyond


CD-SEM, the workhorse metrology tool used by fabs for process control, is facing big challenges at 5nm and below. Traditionally, CD-SEM imaging has relied on a limited number of image frames for averaging, which is necessary both to maintain throughput speeds and to minimize sample damage from the electron beam itself. As dimensions get smaller, these limitations result in higher levels of n... » read more

Variation Making Trouble In Advanced Packages


Variation is becoming increasingly problematic as chip designs become more heterogeneous and targeted by application, making it difficult to identify the root cause of problems or predict what can go wrong and when. Concerns about variation traditionally have been confined to the most advanced nodes, where transistor density is highest and where manufacturing processes are still being fine-t... » read more

Shortages Spark Novel Component Lifecycle Solutions


The semiconductor industry’s supply chain problems are prompting some innovative solutions and workarounds, and while they don't solve all problems, they are improving efficiency and extending equipment lifetimes. The shortages, which affect everything from the chips used in automotive, IoT, and consumer ICs to the equipment used to manufacture and test them — span global supply lines. T... » read more

ASD process that was performed in situ on the etch chamber


New research paper entitled "Plasma-based area selective deposition for extreme ultraviolet resist defectivity reduction and process window improvement" from TEL Technology Center, Americas and IBM Research. Abstract: "Extreme ultraviolet (EUV) lithography has overcome significant challenges to become an essential enabler to the logic scaling roadmap. However, it remains limited by stocha... » read more

Strategies For Faster Yield Ramps On 5nm Chips


Leading chipmakers TSMC and Samsung are producing 5nm devices in high volume production and TSMC is forging ahead with plans for first 3nm silicon by year end. But to meet such aggressive targets, engineers must identify defects and ramp yield faster than before. Getting a handle on EUV stochastic defects — non-repeating patterning defects such as microbridges, broken lines, or missing con... » read more

Gearing Up For High-NA EUV


The semiconductor industry is moving full speed ahead to develop high-NA EUV, but bringing up this next generation lithography system and the associated infrastructure remains a monumental and expensive task. ASML has been developing its high-numerical aperture (high-NA) EUV lithography line for some time. Basically, high-NA EUV scanners are the follow-on to today’s EUV lithography systems... » read more

Finding, Predicting EUV Stochastic Defects


Several vendors are rolling out next-generation inspection systems and software that locates problematic defects in chips caused by processes in extreme ultraviolet (EUV) lithography. Each defect detection technology involves various tradeoffs. But it’s imperative to use one or more of them in the fab. Ultimately, these so-called stochastic-induced defects caused by EUV can impact the perf... » read more

Extreme Quality Semiconductor Manufacturing


By Ben Tsai and Cathy Perry Sullivan Across the full range of semiconductor device types and design nodes, there is a drive to produce chips with significantly higher quality. Automotive, IoT and other industrial applications require chips that achieve very high reliability over a long period of time, and some of these chips must maintain reliable performance while operating in an environmen... » read more

More Lithography/Mask Challenges (part 1)


Semiconductor Engineering sat down to discuss lithography and photomask technologies with Gregory McIntyre, director of the Advanced Patterning Department at [getentity id="22217" e_name="Imec"]; Harry Levinson, senior fellow and senior director of technology research at [getentity id="22819" comment="GlobalFoundries"]; Regina Freed, managing director of patterning technology at [getentity id="... » read more