Scramble For The White Space


Chipmakers are pushing to utilize more of the unused portion of a design for different functions, reducing margin in the rest of the chip to more clearly define that white space. White space typically is used to relieve back-end routing congestion before all of the silicon area is used up. But a significant amount of space still remain unused. That provides an opportunity for inserting monit... » read more

Eliminating Ground-Loop Induced Noise


As semiconductor device performance increases, especially for low power and higher speed ICs, testing low frequency 1/f, RTN and phase noise with improved signal-to-noise ratio is required. Finding and eliminating unwanted noise is required in multiple areas. Noise sources can be found inside a prober, outside a prober, and in a measurement TestCell. Historically, TestCell-generated noise was o... » read more

The Quest To Make 5G Systems Reliable


Semiconductor Engineering sat down to discuss 5G reliability with Anthony Lord, director of RF product marketing at FormFactor; Noam Brousard, system vice president at proteanTecs; Andre van de Geijn, business development manager at yieldHUB; and David Hall, head of semiconductor marketing at National Instruments. What follows are excerpts of that conversation. SE: How do we measure the reli... » read more

Using Critical Area To Boost Automotive IC Test Quality


To compete in the fast-growing market for automotive ICs, semiconductor companies need to address new challenges across the entire design flow. To meet the ISO 26262 goal of zero defective parts per million (DPPM), DFT engineers have embraced new test pattern types, including cell-aware, interconnect, and inter-cell bridge (cell neighborhood). But the traditional methods of choosing the types o... » read more

Critical Area-Based Test Pattern Optimization For High-Quality Test


Among the challenges for DFT engineers is how to set a target metric for ATPG and how to choose the best set of patterns. Traditional coverage targets based on the number of faults detected doesn’t consider the likelihood of one fault occurring compared to another. Tessent developed total critical area ATPG technology that enables the sorting and ordering of patterns based on their likelihood... » read more

Monitoring Chips After Manufacturing


New regulations and variability of advanced process nodes are forcing chip designers to insert additional capabilities in silicon to help with comprehension, debug, analytics, safety, security, and design optimization. The impact of this will be far-reaching as the industry discusses what capabilities can be shared between these divergent tasks, the amount of silicon area to dedicate to it, ... » read more

5G Brings New Testing Challenges


As 5G nears commercial reality, makers of chips and systems that will support 5G will need to take on the standard burden of characterizing and testing their systems to ensure both performance and regulatory adherence. Millimeter-wave (mmWave) and beamforming capabilities present the biggest testing challenges. “5G is expected to have the extended coverage plus the bandwidth to harness ... » read more

Advanced Packaging, Heterogeneous Integration And Test


Major products rely on advanced packaging to reach the market; a groundswell of die-integration technologies are revolutionizing packaging, assembly, and test. At this exciting time in the industry, open engagement between customers and suppliers has never been more important for the test community. Click here to read more. » read more

Next Challenge: Parts Per Quadrillion


Requirements for purity of the materials used in semiconductor manufacturing are being pushed to unprecedented — and increasingly unprovable — levels as demand for reliability in chips over increasingly longer lifetimes continues to rise. And while this may seem like a remote problem for many parts of the supply chain, it can affect everything from availability of materials needed to make t... » read more

Next Challenge: Known Good Systems


The leading edge of design is heading toward multi-die/multi-chiplet architectures, and an increasing number of mainstream designs likely will follow as processing moves closer to the edge. This doesn't mean every chipmaker will be designing leading-edge chips, of course. But more devices will have at least some leading-edge logic or will be connected over some advanced interconnect scheme t... » read more

← Older posts Newer posts →