Different Roles, Different Tools


A question often posed is: does the use of tools and processes change as you go from block level to subsystem and chip level and as you add software to your system on chip (SoC)? And of course, the answer is that things change a lot. The primary differences between designing individual blocks and designing a big chip are that blocks tend to be designed by individual engineers or very small g... » read more

Gaps Emerging In System Integration


The system integration challenge is evolving, but existing tools and methods are not keeping up with the task. New tools and flows are needed to handle global concepts, such as power and thermal, that cannot be dealt with at the block level. As we potentially move into a new era where IP gets delivered as physical pieces of silicon, this lack of an accepted flow will become a stumbling block. ... » read more

Analog Design Needs To Change


It’s an exciting time to be involved in analog design! Innovation in analog design methodology has been flourishing with the introduction of new tools and improved methodologies. And this innovation is badly needed; analog design is getting tougher. Design schedules remain tight, and the technical challenges analog designers face continue to grow – especially when moving to advanced node te... » read more

Machine Learning… Everywhere


AI is transforming the world around us, creating an avenue to innovation across all sectors of the global economy. Today, AI can interact with humans through natural language; identify bank fraud and protect computer networks; drive cars around city streets; and play complex games like chess and Go. Machine-learning is offering solutions to many complex problems around us where analytical solut... » read more

Signal Integrity Through The Years


Yesterday, I started to talk about how new technologies find their way over time into EDA tools in my post How Technologies Get into EDA. Let's look at signal integrity as an example. We used not to worry about signal integrity at all. The first time anything like that impinged on my consciousness was in the early 1980s when we realized that we needed to start to consider the inductance... » read more

Functional Safety Implementation Goes Mainstream


Electronics engineers are being thrust into the automotive market like never before. The move to electrify automobiles, along with the advent of self-driving cars, means that silicon designers will be designing ever more sophisticated automotive ICs. But cars aren’t like most other electronic systems; it’s imperative that they cause no harm should they fail. This brings us to the realm o... » read more

Designing In The Cloud


Amazon AWS was launched back in 2006. Web based services such as Netflix and Expedia were early adopters, and AWS has grown rapidly, bringing in competition from Google (GCP), Microsoft (Azure) and others. It has taken a while for the design community to embrace the ‘cloud’ as some of the needs and concerns of design teams are different.  Cloud vendors have recognized this untapped market ... » read more

Where Are We On The Road To Artificial Intelligence In Chip Design?


It’s hard to find an article today that doesn’t talk about how Artificial Intelligence is going to solve every possible problem in the world. From self-driving cars, to robots running an entire hotel (in Japan), to voice assistants answering your every question, it appears that every problem can be solved with AI. As so often in life, the true answer is: it depends. It depends on the nature... » read more

DO-254 Solutions Blueprint


The Federal Aviation Administration (FAA) recognizes the use of commonly used tools for FPGA design and verification such as RTL simulator, synthesis, place & route and static timing analysis. For DAL A and B FPGAs, the FAA also recognizes other tools that improve design, verification, traceability and project management including requirements management, traceability, tests management, de... » read more

Can AI Alter The Burgeoning Design Cost Trend?


Everyone in the semiconductor design arena has experienced or at least observed the impact of increasing costs for complex SoC silicon. Semico’s recently released report entitled "Silicon and Software Design Cost Analysis" reveals the cost associated with a first time design effort for a high-end, advanced performance multicore SoC using 7nm process technology can top $195M for both the silic... » read more

← Older posts