中文 English

Zeroing In On Biological Computing


Artificial spiking neural networks need to replicate both excitatory and inhibitory biological neurons in order to emulate the neural activation patterns seen in biological brains. Doing this with CMOS-based designs is challenging because of the large circuit footprint required. However, researchers at HP Labs observed that one biologically plausible model, the Hodgkins-Huxley model, is math... » read more

Power/Performance Bits: July 14


5G switches Researchers from the University of Texas at Austin and University of Lille built a new radio frequency switch that could save power in 5G devices when not actively jumping between different networks and spectrum frequencies. “It has become clear that the existing switches consume significant amounts of power, and that power consumed is useless power,” said Deji Akinwande, a ... » read more

Manufacturing Bits: Jan. 7


Beyond 5G chips At the recent IEEE International Electron Devices Meeting (IEDM), NTT and the Tokyo Institute of Technology presented a paper on a technology that could enable high-speed wireless devices beyond the 5G standard. Researchers have devised a 300GHz wireless transceiver (TRx) that supports a data rate of more than 100Gb/s. The device is based on a technology called indium phosph... » read more