Chip Industry’s Technical Paper Roundup: June 5


New technical papers recently added to Semiconductor Engineering’s library: [table id=105 /] More Reading Technical Paper Library home » read more

Issues and Opportunities in Using LLMs for Hardware Design


A technical paper titled "Chip-Chat: Challenges and Opportunities in Conversational Hardware Design" was published by researchers at NYU and University of New South Wales. Abstract "Modern hardware design starts with specifications provided in natural language. These are then translated by hardware engineers into appropriate Hardware Description Languages (HDLs) such as Verilog before syn... » read more

The Race To Make Better Qubits


One of the big challenges in quantum computing is getting qubits to last long enough to do something useful with them. After decades of research, there now appears to be tangible progress. The challenge with any new semiconductor technology is to improve performance by one or more orders of magnitude without discarding a half-century of progress in other areas. Qubits based on silicon quantu... » read more

Manufacturing Bits: Aug. 17


Scaling qubits Australia is a hotbed of R&D activity, especially in the field of quantum computing. For example, the University of New South Wales (UNSW) in Australia has demonstrated a possible way to control millions of qubits in a silicon quantum chip. Researchers from UNSW Sydney have devised a new three-dimensional dielectric resonator, a technology that could deliver controlled... » read more

Power/Performance Bits: June 1


Stronger PUFs Researchers from Ohio State University and Potomac Research propose a new version of physical unclonable functions, or PUFs, that could be used to create secure ID cards, to track goods in supply chains, and as part of authentication applications. "There's a wealth of information in even the smallest differences found on computers chips that we can exploit to create PUFs," sai... » read more

Power/Performance Bits: March 8


Non-toxic, printable piezoelectric Researchers at RMIT University and University of New South Wales developed a flexible and printable piezoelectric material that could be used in self-powered electronics including wearables and implantables. "Until now, the best performing nano-thin piezoelectrics have been based on lead, a toxic material that is not suitable for biomedical use," said Dr N... » read more

Power/Performance Bits: Jan. 5


Quiet qubits Researchers at the University of New South Wales Sydney recorded the lowest noise levels yet for a semiconductor qubit. Charge noise caused by material imperfections interferes with the information encoded on qubits, reducing accuracy. "The level of charge noise in semiconductor qubits has been a critical obstacle to achieving the accuracy levels we need for large-scale error-c... » read more

Power/Performance Bits: Feb. 25


Thinner, flexible touchscreens Researchers from RMIT University, University of New South Wales, and Monash University developed a thin, flexible electronic material for touchscreens. The material is 100 times thinner than current touchscreen materials. The new screens are still based on indium-tin oxide (ITO), a common touchscreen material. However, a liquid metal printing approach was used... » read more

Power/Performance Bits: Sept. 3


Nylon capacitor Researchers at the Max Planck Institute for Polymer Research, Johannes Gutenberg University of Mainz, and Lodz University of Technology developed a way to fabricate ferroelectric nylon thin-film capacitors. Nylons consist of a long chain of polymers and, along with use in textiles, exhibit ferroelectric properties. However, electronic applications have been limited as there ... » read more

Power/Performance Bits: Mar. 11


Reading qubits faster Researchers at Aalto University and VTT Technical Research Centre of Finland propose a faster way to read information from qubits, the building blocks of quantum computers. Currently, they are extremely sensitive to disruption even in cryogenic environments, holding quantum information for less than a millisecond. In the method now used to read information from a qubit... » read more

← Older posts Newer posts →