Using Symbolic Simulation For SRAM Redundancy Repair Verification


Innovations in Very Deep Sub-Micron technologies, such as the advent of three-dimensional FinFET transistor structures, have facilitated the implementation of very large embedded SRAM memories in System-on-Chip (SoC) designs to the point where they occupy the majority of the chip die area. To get maximum memory capacity on the smallest die area, SRAM bitcells are designed with the minimum possi... » read more

The Third Generation Of FPGA Prototyping


Bench setups with physical prototypes lie at the very heart of electrical and electronic engineering. With all due respect to the many powerful forms of modeling and simulation, at some point the engineering team wants to work with hardware. When a system is built entirely from existing components, it is possible to build a prototype of the product as soon as it has been designed. When the desi... » read more

Eliminating Software Development Bottlenecks For SoCs


System on chip (SoC) devices, by definition, use a combination of hardware and embedded software to provide their specified functionality. Both the design and programming teams face many challenges and have huge tasks. No matter how well they may perform, the full system cannot be verified and validated until the hardware and software are brought together in the bring-up lab. This is usually wa... » read more

Intelligent Coverage Optimization: Verification Closure In Hyperdrive


Coverage dominates every aspect of verification for today’s complex IP and chip designs. Coverage metrics provide critical feedback on what has been verified and what has not, especially when automated stimulus generation techniques are used. All modern hardware design and verification languages include constructs for functional coverage specification and support a range of structural coverag... » read more

Using IP-XACT To Solve Design And Verification Problems


As today’s SoC designs grow more complex and time-to-market (TTM) pressures rise, designers are looking for techniques to build and update designs easily. Key elements for addressing these SoC challenges include the incorporation of more commercial IP components, internal design IP reuse, and extensive automation of design and verification activities. Enhanced interoperability and reusability... » read more

3D IC: Opportunities, Challenges, And Solutions


Nearly every big city reaches a point in its evolution when it runs out of open space and starts building vertically. This enables far more apartments, offices and people per square mile, while avoiding the increased infrastructure costs of suburban sprawl. Semiconductors are evolving in much the same way. Moore’s Law is slowing, and adoption of new advanced technology nodes is slowing as wel... » read more

Four Requirements To Improve Chip Design Debug


Debug has always been a painful and unavoidable part of semiconductor design and, despite many technological advances, it remains one of the dominant tasks in chip development. At one time, most bugs were detected and diagnosed on actual devices in the bring-up lab, where both visibility and controllability are severely limited. It is certainly true that debugging the results from pre-silicon t... » read more

Optimize Physical Verification Cost Of Ownership


As semiconductor designs continue to grow in size and complexity, they put increasing pressure on every stage of the design process. Physical verification, often on the critical path to tape-out, is especially affected. Design rule checking (DRC), layout versus schematic (LVS), and other physical verification runs take longer as chip size increases. In addition, finer geometries introduce new c... » read more

Cell Library Verification Using Symbolic Simulation


Standard cell libraries have been a mainstay of chip design for many decades since the inception of logic synthesis and composition methodologies. Cell library IP typically contains Verilog models describing the cell functionality, schematic derived transistor level netlists, place and route views, physical layout views, post-layout extracted netlists as well as characterized timing and power m... » read more

Early Simulation Of Multi-Cycle Paths And False Paths


Designing with synchronous clocks avoids metastability issues on clock domain crossings, but it presents its own challenges when multi-cycle and false paths are involved. A multi-cycle path (MCP) occurs when a logical function requires more than one clock cycle to produce a final, stable result. The designer must ensure that the destination register does not clock until the result is ready. Thi... » read more

← Older posts Newer posts →