Learn about a method for securing RISC-V IP that uses Operational SVA to formalize the RISC-V ISA. This paper says the resulting set of assertions is free from gaps and inconsistencies.
RISC-V processor IPs are increasingly being integrated into system-on-chip designs for a variety of applications. However, there is still a lack of dedicated functional verification solutions supporting high-integrity, trusted integrated circuits. This paper examines an efficient, novel, formal-based RISC-V processor verification methodology. The RISC-V ISA is formalized in a set of Operational SystemVerilog assertions. Each assertion is formally verified against the processor’s RTL model. Crucially, the set of assertions is then mathematically proven to be complete and free from gaps, thus ensuring that all possible RTL behaviors have been examined. This systematic verification process detects both deliberate hardware Trojans and genuine functional errors present in the RTL code. The solution is demonstrated on an open-source RISC-V implementation using a commercially available formal tool, and is arguably a significant improvement to previously published RISC-V ISA verification approaches, advancing hardware assurance and trust of RISC-V based designs.
To read more, click here.
New interconnects and processes will be required to reach the next process nodes.
Servers today feature one or two x86 chips, or maybe an Arm processor. In 5 or 10 years they will feature many more.
After failing in the fab race, the country has started focusing on less capital-intensive segments.
Rowhammer attack on memory could create significant issues for systems; possible solution emerges.
New markets, different architectures, and continued virtual work environments all point to positive and sustained growth.
Gate-all-around FETs will replace finFETs, but the transition will be costly and difficult.
An upbeat industry at the start of the year met one of its biggest challenges, but instead of being a headwind, it quickly turned into a tailwind.
The backbone of computing architecture for 75 years is being supplanted by more efficient, less general compute architectures.
New horizontal technologies and vertical markets are fueling the opportunities for massive innovation throughout an expanding ecosystem.
Rising costs, complexity, and fuzzy delivery schedules are casting a cloud over next-gen lithography.
New approaches to preventing counterfeiting across the supply chain.
Challenges range from constant security updates to expected lifetimes that last beyond the companies that made them.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
Leave a Reply