A comprehensive solution for optimizing performance in development and production and using predictive maintenance in the field.
Combining functional and parametric monitoring of the real-world behavior of complex SoCs provides a powerful new approach that facilitates performance optimization during development and in the field, improves security and safety, and enables predictive maintenance to prevent field failures. proteanTecs’ Universal Chip Telemetry (UCT) and Siemens’ Tessent Embedded Analytics are complementary technologies that enable just such an approach, informed by Deep Data.
Examples based on ADAS and autonomous driving systems demonstrate how the two systems interact to shine a light on even the most complex problems in electronics design, production, and deployment.
This white paper, in collaboration with Siemens Digital Industries Software, outlines two highly complimentary approaches that together form a comprehensive solution for performance optimization in development and production, and predictive maintenance in the field.
Click here to read more.
Less precision equals lower power, but standards are required to make this work.
Open source by itself doesn’t guarantee security. It still comes down to the fundamentals of design.
Ensuring that your product contains the best RISC-V processor core is not an easy decision, and current tools are not up to the task.
Wafer manufacturing and GPUs draw investment; 106 companies raise $2.8B.
Heterogenous integration depends on reliable TSVs, microbumps, vias, lines, and hybrid bonds — and time to digest all the options.
How prepared the EDA community is to address upcoming challenges isn’t clear.
Advanced etch holds key to nanosheet FETs; evolutionary path for future nodes.
Details on more than $500B in new investments by nearly 50 companies; what’s behind the expansion frenzy, why now, and challenges ahead.
From specific design team skills, to organizational and economic impacts, the move to bespoke silicon is shaking things up.
Less precision equals lower power, but standards are required to make this work.
New memory approaches and challenges in scaling CMOS point to radical changes — and potentially huge improvements — in semiconductor designs.
Open-source processor cores are beginning to show up in heterogeneous SoCs and packages.
Open source by itself doesn’t guarantee security. It still comes down to the fundamentals of design.
Leave a Reply