Design Rule Complexity Rising


Variation, edge placement error, and a variety of other issues at new process geometries are forcing chipmakers and EDA vendors to confront a growing volume of increasingly complex, and sometimes interconnected design rules to ensure chips are manufacturable. The number of rules has increased to the point where it's impossible to manually keep track of all of them, and that has led to new pr... » read more

What Happened To Nanoimprint Litho?


Nanoimprint lithography (NIL) is re-emerging amid an explosion of new applications in the market. Canon, EV Group, Nanonex, Suss and others continue to develop and ship NIL systems for a range of markets. NIL is different than conventional lithography and resembles a stamping process. Initially, a lithographic system forms a pattern on a template based on a pre-defined design. Then, a separa... » read more

Why All Nodes Won’t Work


A flood of new nodes, half-nodes and every number in between is creating confusion among chipmakers. While most say it's good to have choices, it's not clear which or how many of those choices are actually good. At issue is which [getkc id="43" kc_name="IP"] will be available for those nodes, how that IP will differ from other nodes in terms of power, performance, area and sensitivity to a v... » read more

By the Power Vested in Me, I Now Pronounce You (The SoC Designer)…


…Doomed. Well, maybe that’s a little harsh, but your job won’t be getting any easier; that “happily ever after” may be harder to achieve than you think, and there are a number of reasons why. And by “me” (of vested power), here I’m really talking about the power of the consumer market as a whole and our collective insatiable demand for newer, shinier…well, just plain “coo... » read more

Chip Aging Accelerates


Reliability is becoming an increasingly important proof point for new chips as they are rolled out in new markets such as automotive, cloud computing and industrial IoT, but actually proving that a chip will function as expected over time is becoming much more difficult. In the past, reliability generally was considered a foundry issue. Chips developed for computers and phones were designed ... » read more

Nodes Vs. Nodelets


Foundries are flooding the market with new nodes and different process options at existing nodes, spreading confusion and creating a variety of challenges for chipmakers. There are full-node processes, such as 10nm and 7nm, with 5nm and 3nm in R&D. But there also is an increasing number of half-nodes or "node-lets" being introduced, including 12nm, 11nm, 8nm, 6nm and 4nm. Node-lets ar... » read more

Follow The Moving Money


Semiconductor economics are changing by market, by region, and by product node and packaging type, adding new complexity into decisions about which technology to use for which products and why. Money is the common denominator in all of these decisions, whether it's measured by return on invested capital, quarterly profits, or long-term investments that can include acquisitions, organic growt... » read more

Tech Talk: 7nm Process Variation


Ankur Gupta, director of field applications at ANSYS, discusses process variation and the problems it can cause at 10/7nm and beyond. https://youtu.be/WHNjFr1Da6s » read more

The Next 5 Years Of Chip Technology


Semiconductor Engineering sat down to discuss the future of scaling, the impact of variation, and the introduction of new materials and technologies, with Rick Gottscho, CTO of [getentity id="22820" comment="Lam Research"]; Mark Dougherty, vice president of advanced module engineering at [getentity id="22819" comment="GlobalFoundries"]; David Shortt, technical fellow at [getentity id="22876" co... » read more

Mixed-Signal Issues Worse At 10/7nm


Despite increasingly difficulty in scaling digital logic to 10/7nm, not all designs at the leading edge are digital. In fact, there are mixed-signal components in designs at almost all nodes down to 10/7nm. This may seem surprising because analog scaling has been an issue since about 90nm, but these are not traditional analog components. Analog IP increasingly includes highly integrated, mix... » read more

← Older posts