Fan-Out Packaging Gets Competitive


Fan-out wafer-level packaging (FOWLP) is a key enabler in the industry shift from transistor scaling to system scaling and integration. The design fans out the chip interconnects through a redistribution layer instead of a substrate. Compared to flip-chip ball grid array (FCBGA) or wire bonds, it creates lower thermal resistance, a slimmer package, and potentially lower costs. Yet, if the h... » read more

2.5/3D IC Reliability Verification Has Come A Long Way


2.5D/3D integrated circuits (ICs) have evolved into an innovative solution for many IC design and integration challenges. As shown in figure 1, 2.5D ICs have multiple dies placed side-by-side on a passive silicon interposer. The interposer is placed on a ball grid array (BGA) organic substrate. Micro-bumps attach each die to the interposer, and flip-chip (C4) bumps attach the interposer to the ... » read more

Hybrid Bonding Moves Into The Fast Lane


The industry’s unquenchable thirst for I/O density and faster connections between chips, particularly logic and cache memory, is transforming system designs to include 3D architectures, and hybrid bonding has become an essential component in that equation. Hybrid bonding involves die-to-wafer or wafer-to-wafer connection of copper pads that carry power and signals and the surrounding diele... » read more

Customization, Heterogenous Integration, And Brute Force Verification


Semiconductor Engineering sat down to discuss why new approaches are required for heterogeneous designs, with Bari Biswas, senior vice president for the Silicon Realization Group at Synopsys; John Lee, general manager and vice president of the Ansys Semiconductor business unit; Michael Jackson, corporate vice president for R&D at Cadence; Prashant Varshney, head of product for Microsoft Azu... » read more

What Future Processors Will Look Like


Mark Papermaster, CTO at AMD, sat down with Semiconductor Engineering to talk about architectural changes that are required as the benefits of scaling decrease, including chiplets, new standards for heterogeneous integration, and different types of memory. What follows are excerpts of that conversation. SE: What does a processor look like in five years? Is it a bunch of chips in a package? I... » read more

EDA Gaps At The Leading Edge


Semiconductor Engineering sat down to discuss why new approaches are required for heterogeneous designs, with Bari Biswas, senior vice president for the Silicon Realization Group at Synopsys; John Lee, general manager and vice president of the Ansys Semiconductor business unit; Michael Jackson, corporate vice president for R&D at Cadence; Prashant Varshney, head of product for Microsoft Azu... » read more

Keeping IC Packages Cool


Placing multiple chips into a package side-by-side can alleviate thermal issues, but as companies dive further into die stacking and denser packaging to boost performance and reduce power, they are wrestling with a whole new set of heat-related issues. The shift to advanced packaging enables chipmakers to meet demands for increasing bandwidth, clock speeds, and power density for high perform... » read more

Paving The Way To Chiplets


The packaging industry is putting pieces in place to broaden the adoption of chiplets beyond just a few chip vendors, setting the stage for next-generation 3D chip designs and packages. New chiplet standards, and a cost analysis tool for determining the feasibility of a given chiplet-based design, are two new and important pieces. Along with other efforts, the goal is to propel the chiplet m... » read more

Clocks Getting Skewed Up


At a logical level, synchronous designs are very simple and the clock just happens. But the clocking network is possibly the most complex in a chip, and it's fraught with the most problems at the physical level. To some, the clock is the AC power supply of the chip. To others, it is an analog network almost beyond analysis. Ironically, there are no languages to describe clocking, few tools t... » read more

Chiplets Enter The Supercomputer Race


Several entities from various nations are racing each other to deliver and deploy chiplet-based exascale supercomputers, a new class of systems that are 1,000x faster than today’s supercomputers. The latest exascale supercomputer CPU and GPU designs mix and match complex dies in advanced packages, adding a new level of flexibility and customization for supercomputers. For years, various na... » read more

← Older posts Newer posts →