Outlook: DRAM, NAND, Next-Gen Memory


Jim Handy, director at Objective Analysis, sat down with Semiconductor Engineering to talk about the 3D NAND, DRAM and next-generation memory markets. What follows are excerpts of that discussion. SE: How would you characterize the NAND market thus far in 2021? Handy: All chips are seeing unusual strength in 2021, but NAND flash and DRAM are doing what they usually do by exhibiting more e... » read more

A Deeper Look into RowHammer’s Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses


Abstract "RowHammer is a circuit-level DRAM vulnerability where repeatedly accessing (i.e., hammering) a DRAM row can cause bit flips in physically nearby rows. The RowHammer vulnerability worsens as DRAM cell size and cell-to-cell spacing shrink. Recent studies demonstrate that modern DRAM chips, including chips previously marketed as RowHammer-safe, are even more vulnerable to RowHammer than... » read more

HBM2E Raises The Bar For Memory Bandwidth


AI/ML training capabilities are growing at a rate of 10X per year driving rapid improvements in every aspect of computing hardware and software. HBM2E memory is the ideal solution for the high bandwidth requirements of AI/ML training, but entails additional design considerations given its 2.5D architecture. Designers can realize the full benefits of HBM2E memory with the silicon-proven memory s... » read more

More Errors, More Correction in Memories


As memory bit cells of any type become smaller, bit error rates increase due to lower margins and process variation. This can be dealt with using error correction to account for and correct bit errors, but as more sophisticated error-correction codes (ECC) are used, it requires more silicon area, which in turn drives up the cost. Given this trend, the looming question is whether the cost of ... » read more

Standards for the Characterization of Endurance in Resistive Switching Devices


Abstract "Resistive switching (RS) devices are emerging electronic components that could have applications in multiple types of integrated circuits, including electronic memories, true random number generators, radiofrequency switches, neuromorphic vision sensors, and artificial neural networks. The main factor hindering the massive employment of RS devices in commercial circuits is related to... » read more

HBM3: Big Impact On Chip Design


An insatiable demand for bandwidth in everything from high-performance computing to AI training, gaming, and automotive applications is fueling the development of the next generation of high-bandwidth memory. HBM3 will bring a 2X bump in bandwidth and capacity per stack, as well as some other benefits. What was once considered a "slow and wide" memory technology to reduce signal traffic dela... » read more

Multi-DRAM Memory Subsystems In SoCs


Even with DRAM capacity going up with each generation of DRAM, the demand for memory densities by a variety of applications is growing at an even faster rate. To support these high memory densities and bus width requirements (that are typically more than what a single DRAM can support), almost all the new generation of memory subsystems and SoCs have multiple DRAM dies combined to effectively c... » read more

HBM3 Memory: Break Through To Greater Bandwidth


AI/ML’s demands for greater bandwidth are insatiable driving rapid improvements in every aspect of computing hardware and software. HBM memory is the ideal solution for the high bandwidth requirements of AI/ML training, but it entails additional design considerations given its 2.5D architecture. Now we’re on the verge of a new generation of HBM that will raise memory and capacity to new hei... » read more

Modeling electrical conduction in resistive-switching memory through machine learning


Published in AIP Advances on July 13, 2021. Read the full paper (open access). Abstract Traditional physical-based models have generally been used to model the resistive-switching behavior of resistive-switching memory (RSM). Recently, vacancy-based conduction-filament (CF) growth models have been used to model device characteristics of a wide range of RSM devices. However, few have focused o... » read more

On the Road To Higher Memory Bandwidth


In the decade since HBM was first announced, we’ve seen two-and-a-half generations of the standard come to market. HBM’s “wide and slow” architecture debuted first at a data rate of 1 gigabit per second (Gbps) running over a 1024-bit wide interface. The product of that data rate and that interface width provided a bandwidth of 128 gigabytes per second (GB/s). In 2016, HBM2 doubled the s... » read more

← Older posts Newer posts →