中文 English

Buried nanomagnet realizing high-speed/low-variability silicon spin qubits: implementable in error-correctable large-scale quantum computers


Abstract: "We propose a buried nanomagnet (BNM) realizing highspeed/low-variability silicon spin qubit operation, inspired by buried wiring technology, for the first time. High-speed quantum-gate operation results from large slanting magnetic-field generated by the BNM disposed quite close to a spin qubit, and low-variation of fidelity thanks to the self-aligned fabrication process. Employing ... » read more

Power/Performance Bits: Dec. 15


Graphite films for cooling electronics Researchers at King Abdullah University of Science and Technology (KAUST) developed a way to make a carbon material well suited to dissipating heat in electronic devices. Graphite films are frequently used for heat management. "However, the method used to make these graphite films, using polymer as a source material, is complex and very energy intensiv... » read more

Interest Grows In Ferroelectric Devices


Ferroelectric FETs and memories are beginning to show promise as researchers begin developing and testing next-generation transistors. One measure of the efficiency of a transistor is the subthreshold swing, which is the change in gate voltage needed to increase the drain current by one order of magnitude. Measured in units of millivolts per decade, in conventional MOSFETs it is limited to k... » read more

Manufacturing Bits: Dec. 18


Gallium oxide breakthroughs Crystalline beta gallium oxide is a promising wide bandgap semiconductor material. It has a large bandgap of 4.8–4.9 eV with a high breakdown field of 8 MV/cm. The technology has a high voltage figure of merit, which is more than 3,000 times greater than silicon, more than 8 times greater than silicon carbide (SiC) and more than 4 times greater than that of... » read more

Manufacturing Bits: Oct. 23


3D stacked finFETs At the upcoming 2018 IEEE International Electron Devices Meeting (IEDM), Imec is expected to present a paper on a 3D stacked finFET architecture. IEDM is slated from Dec. 1-5 in San Francisco. Imec’s technology is based what on the R&D organization calls sequential integration. Another R&D organization, Leti, calls it 3D monolithic integration. Regardless, the idea... » read more

Manufacturing Bits: Sept. 4


Flat diamond chips Kanazawa University and the National Institute of Advanced Industrial Science and Technology (AIST) have developed a process that solves a big issue for diamond semiconductors in power applications. Researchers have developed a water vapor annealing technique that creates atomically flat diamond surfaces. This brings diamond semiconductors one step closer to becoming more... » read more

Manufacturing Bits: Jan. 6


Vertical SiC chips for electric cars Silicon carbide (SiC) is a promising material for power electronics. The material has a high breakdown voltage, high operating temperatures and a superior thermal conductivity. At the recent 2014 IEEE International Electron Devices Meeting (IEDM) in San Francisco, Toyota, the National Institute of Advanced Industrial Science and Technology (AIST) and the... » read more

Manufacturing Bits: May 20


Brain chips Pennsylvania State University has developed a technology that could enable futuristic biochips, namely those that mimic the human brain. In the lab, Penn State combined a thin film of vanadium dioxide (VO2) on a titanium dioxide substrate to create an oscillating switch. VO2 is an exotic material that exhibits semiconductor-to-metal transitions at 68 °C. In the R&D stage fo... » read more

Manufacturing Bits: Jan. 21


Redefining The Kilogram In 2011, the General Conference on Weights and Measures approved a plan to redefine the kilogram and other measurement units. The new definition for the kilogram will be based on the fixed numerical values of Planck’s constant (h), according to the National Institute of Standards and Technology (NIST), part of the U.S. Department of Commerce. NIST has taken steps t... » read more

Manufacturing Bits: Sept. 24


LEGO AFM Students from the University College London (UCL), Tsinghua University and Peking University have built an atomic force microscope (AFM) or nanoscope using toy LEGOs. The AFM, dubbed LEGO2NANO, costs less than $500 to make. In contrast, traditional AFMs cost $100,000 or more. The system was made using LEGOs, Arduino controllers, 3D printed parts and consumer electronics. [captio... » read more

← Older posts