provigil drug testing, provigil vs armodafinil, can provigil get you high, hcg provigil 5000 iu, indications for provigil, provigil generic name

Cryogenic Etch Re-Emerges


After years in R&D, a technology called cryogenic etch is re-emerging as a possible option for production as the industry faces new challenges in memory and logic. Cryogenic etch removes materials in devices with high aspect ratios at cold temperatures, although it has always been a challenging process. Cryogenic etch is difficult to control and it requires specialized cryogenic gases in... » read more

Where Is Selective Deposition?


For years, the industry has been working on an advanced technology called area-selective deposition for chip production at 5nm and beyond. Area-selective deposition, an advanced self-aligned patterning technique, is still in R&D amid a slew of challenges with the technology. But the more advanced forms of technology are beginning to make some progress, possibly inching closer from the la... » read more

Big Trouble At 3nm


As chipmakers begin to ramp up 10nm/7nm technologies in the market, vendors are also gearing up for the development of a next-generation transistor type at 3nm. Some have announced specific plans at 3nm, but the transition to this node is expected to be a long and bumpy one, filled with a slew of technical and cost challenges. For example, the design cost for a 3nm chip could exceed an eye-p... » read more

Patterning Problems Pile Up


Chipmakers are ramping up 16nm/14nm finFET processes, with 10nm and 7nm now moving into early production. But at 10nm and beyond, chipmakers are running into a new set of problems. While shrinking feature sizes of a device down to 10nm, 7nm, 5nm and perhaps beyond is possible using current and future fab equipment, there doesn't seem to be a simple way to solve the edge placement error (EPE)... » read more

Managing Parasitics For Transistor Performance


The basic equations describing transistor behavior rely on parameters like channel doping, the capacitance of the gate oxide, and the resistance between the source and drain and the channel. And for most of the IC industry's history, these have been sufficient. “Parasitic” or “external” resistances and capacitances from structures outside the transistor have been small enough to discoun... » read more

Etching Technology Advances


Let’s get really, really small. That directive from leading semiconductor companies and their customers is forcing the whole semiconductor supply chain to come up with new ways to design and manufacture ever-shrinking dimensions for chips. The current push is to 10nm and 7nm, but R&D into 5nm and 3nm is already underway. To put this in perspective, there are roughly two silicon atom... » read more

Inside Advanced Patterning


Prabu Raja, group vice president and general manager for the Patterning and Packaging Group at [getentity id="22817" e_name="Applied Materials"], sat down with Semiconductor Engineering to discuss the trends in patterning, selective processes and other topics. Raja is also a fellow at Applied Materials. What follows are excerpts of that conversion. SE: From your standpoint, what are the big... » read more

Atomic Layer Etch Heats Up


The atomic layer etch (ALE) market is starting to heat up as chipmakers push to 10nm and beyond. ALE is a promising next-generation etch technology that has been in R&D for the last several years, but until now there has been little or no need to use it. Unlike conventional etch tools, which remove materials on a continuous basis, ALE promises to selectively and precisely remove targete... » read more

Fab Issues At 7nm And 5nm


The race toward the 7nm logic node officially kicked off in July, when IBM Research, GlobalFoundries and Samsung jointly rolled out what the companies claim are the industry’s first 7nm test chips with functional transistors. They're not alone, of course. Intel and TSMC also are racing separately to develop 7nm technology. And in the R&D labs, chipmakers also are working on technologies f... » read more