Blog Review: November 29


Siemens' Matt Walsh checks out electro-thermal design and how a Boundary Condition Independent Reduced Order Model (BCI-ROM) can capture accurate characteristics from a 3D thermal analysis, ready for use in a 1D circuit simulation. Cadence's Vinod Khera considers how EDA could benefit from the AI revolution by providing a productivity boost through virtual assistants and improving code quali... » read more

Improving AI Productivity With AI


AI is showing up or proposed for nearly all aspects of chip design, but it also can be used to improve the performance of AI chips and to make engineers more productive earlier in the design process. Matt Graham, product management group director at Cadence, talks with Semiconductor Engineering about the role of AI in identifying patterns that are too complex for the human brain to grasp, how t... » read more

Autonomous Vehicles: Not Ready Yet


The swirl of activity around L4 and L5 vehicles has yet to result in a successful demonstration of an autonomous vehicle that can navigate the streets of a city or highway without incident, and there is a growing body of real-world data showing that much work still needs to be done. Robo-taxi trials in big cities such as San Francisco, Los Angeles, and soon San Diego, are proving that autono... » read more

Chip Industry Week In Review


By Jesse Allen, Karen Heyman, and Liz Allan Japan's Rapidus and the University of Tokyo are teaming up with France's Leti to meet its previously announced mass production goal of 2nm chips by 2027, and chips in the 1nm range in the 2030s. Rapidus was formed in 2022 with the support of eight Japanese companies — Sony, Kioxia, Denso, NEC, NTT, SoftBank, Toyota, and Mitsubishi's banking arm, ... » read more

Blog Review: November 15


Cadence's Neelabh Singh explores the process of lane initialization and link training in bringing up a high-speed link in USB4. Synopsys' Shela Aboud argues that TCAD should be an integral part of an EDA flow as it enhances design technology co-optimization with a way to experiment and determine what works and what doesn’t work at different process nodes using physics-based models. Siem... » read more

What Can Go Wrong In Heterogeneous Integration


Experts at the Table: Semiconductor Engineering sat down to discuss heterogeneous integration with Dick Otte, president and CEO of Promex Industries; Mike Kelly, vice president of chiplets/FCBGA integration at Amkor Technology; Shekhar Kapoor, senior director of product management at Synopsys; John Park, product management group director in Cadence's Custom IC & PCB Group; and Tony Mastroia... » read more

DRAM Choices Are Suddenly Much More Complicated


Chipmakers are beginning to incorporate multiple types and flavors of DRAM in the same advanced package, setting the stage for increasingly distributed memory but significantly more complex designs. Despite years of predictions that DRAM would be replaced by other types of memory, it remains an essential component in nearly all computing. Rather than fading away, its footprint is increasing,... » read more

Chip Industry Week In Review


By Jesse Allen, Gregory Haley, and Liz Allan Bosch, Infineon, and NXP were cleared in Germany to each acquire 10% of the European Semiconductor Manufacturing Co. (ESMC), established by TSMC, solidifying the supply chain against future shortages, particularly for automotive chips. “ESMC intends to build and operate another large semiconductor factory in Dresden, in which the three Europ... » read more

Flipping Processor Design On Its Head


AI is changing processor design in fundamental ways, combining customized processing elements for specific AI workloads with more traditional processors for other tasks. But the tradeoffs are increasingly confusing, complex, and challenging to manage. For example, workloads can change faster than the time it takes to churn out customized designs. In addition, the AI-specific processes may ex... » read more

An Entangled Heterarchy


For decades, a form of structural hierarchy has been the principal means of handling complexity in chip design. It's not always perfect, and there is no ideal way in which to divide and conquer because that would need to focus on the analysis being performed. In fact, most systems can be viewed from a variety of different hierarchies, equally correct, and together forming a heterarchy. The e... » read more

← Older posts Newer posts →