DTCO/STCO Create Path For Faster Yield Ramps


Higher density in planar SoCs and advanced packages, coupled with more complex interactions and dependencies between various components, are permitting systematic defects to escape traditional detection methods. These issues increasingly are not detected until the chips reach high-volume manufacturing, slowing the yield ramp and bumping up costs. To combat these problems, IDMs and systems co... » read more

3D In-Memory Compute Making Progress


Indium compounds are showing great promise for 3D in-memory compute and RF integration, but more work is needed. Researchers continue to make headway into 3D device integration particularly with indium tin oxide (ITO), which is widely used in display manufacturing. Recent work indicates that different compounds of indium oxide doped with tin, gallium, or zinc combinations may boost transisto... » read more

Will CFETs Help The Industry Go Vertical?


Device scaling is getting much harder at each new process node. Even defining what it means is becoming a challenge. In the past, gate length and metal pitch went down and device density went up. Today, this is much harder for several reasons: • Short channel effects limit gate-length scaling; • Parasitic effects limit device density, and • Metal resistance limits metal pitch. So r... » read more

Tech Forecast: Fab Processes To Watch Through 2040


The massive proliferation of semiconductors in more markets, and more applications within those markets, is expected to propel the industry to more than $1 trillion by 2030. But over the next 17 years, semiconductors will reach well beyond the numbers, changing the way people work, how they communicate, and how they measure and monitor their health and well-being. Chips will be the enabling ... » read more

Metrology Options Increase As Device Needs Shift


Semiconductor fabs are taking an ‘all hands on deck’ approach to solving tough metrology and yield management challenges, combining tools, processes, and other technologies as the chip industry transitions to nanosheet transistors on the front end and heterogenous integration on the back end. Optical and e-beam tools are being extended, while X-ray inspection is being added on a case-by-... » read more

What’s Different About Next-Gen Transistors


After nearly a decade and five major nodes, along with a slew of half-nodes, the semiconductor manufacturing industry will begin transitioning from finFETs to gate-all-around stacked nanosheet transistor architectures at the 3nm technology node. Relative to finFETs, nanosheet transistors deliver more drive current by increasing channel widths in the same circuit footprint. The gate-all-aroun... » read more

Big Changes In Architectures, Transistors, Materials


Chipmakers are gearing up for fundamental changes in architectures, materials, and basic structures like transistors and interconnects. The net result will be more process steps, increased complexity for each of those steps, and rising costs across the board. At the leading-edge, finFETs will run out of steam somewhere after the 3nm (30 angstrom) node. The three foundries still working at th... » read more

2D Semiconductors Make Progress, But Slowly


Researchers are looking at a variety of new materials at future nodes, but progress remains slow. In recent years, 2D semiconductors have emerged as a leading potential solution to the problem of channel control in highly scaled transistors. As devices shrink, the channel thickness should shrink proportionally. Otherwise, the gate capacitance won’t be large enough to control the flow of cu... » read more

Transistors Reach Tipping Point At 3nm


The semiconductor industry is making its first major change in a new transistor type in more than a decade, moving toward a next-generation structure called gate-all-around (GAA) FETs. Although GAA transistors have yet to ship, many industry experts are wondering how long this technology will deliver — and what new architecture will take over from there. Barring major delays, today’s GAA... » read more

What’s Next For Transistors And Chiplets


Sri Samavedam, senior vice president of CMOS Technologies at Imec, sat down with Semiconductor Engineering to talk about finFET scaling, gate-all-around transistors, interconnects, packaging, chiplets and 3D SoCs. What follows are excerpts of that discussion. SE: The semiconductor technology roadmap is moving in several different directions. We have traditional logic scaling, but packaging i... » read more

← Older posts Newer posts →