RF SOI Wars Begin


Several foundries are expanding their fab capacities for RF SOI processes amid huge demand and shortages of this technology for smartphones. A number of foundries are increasing their 200mm RF SOI fab capacities to meet soaring demand. Then, GlobalFoundries, TowerJazz, TSMC and UMC are expanding or bringing up RF SOI processes in 300mm fabs in an apparent race to garner the first wave of RF ... » read more

New Patterning Options Emerging


Several fab tool vendors are rolling out the next wave of self-aligned patterning technologies amid the shift toward new devices at 10/7nm and beyond. Applied Materials, Lam Research and TEL are developing self-aligned technologies based on a variety of new approaches. The latest approach involves self-aligned patterning techniques with multi-color material schemes, which are designed for us... » read more

New Nodes, Materials, Memories


Ellie Yieh, vice president and general manager of Advanced Product Technology Development at [getentity id="22817" e_name="Applied Materials"], and head of the company's Maydan Technology Center, sat down with Semiconductor Engineering to talk about challenges, changes and solutions at advanced nodes and with new applications. What follows are excerpts of that conversation. SE: How far can w... » read more

Four Foundries Back MRAM


Four major foundries plan to offer MRAM as an embedded memory solution by this year or next, setting the stage for what finally could prove to be a game-changer for this next-generation memory technology. GlobalFoundries, Samsung, TSMC and UMC plan to start offering spin-transfer torque magnetoresistive RAM (ST-MRAM or STT-MRAM) as an alternative or a replacement to NOR flash, possibly start... » read more

Ruthenium Liners Give Way To Ruthenium Lines


For several years now, integrated circuit manufacturers have been investigating alternative barrier layer materials for copper interconnects. As interconnect dimensions shrink, the barrier accounts for an increasing fraction of the total line volume. As previously reported, both cobalt and ruthenium have drawn substantial interest because they can serve as both barrier and seed layers, minimizi... » read more

Is 7nm The Last Major Node?


A growing number of design and manufacturing issues are prompting questions about what scaling will really look like beyond 10/7nm, how many companies will be involved, and which markets they will address. At the very least, node migrations will go horizontally before proceeding numerically. There are expected to be more significant improvements at 7nm than at any previous node, so rather th... » read more

New BEOL/MOL Breakthroughs?


Chipmakers are moving ahead with transistor scaling at advanced nodes, but it's becoming more difficult. The industry is struggling to maintain the same timeline for contacts and interconnects, which represent a larger portion of the cost and unwanted resistance in chips at the most advanced nodes. A leading-edge chip consists of three parts—the transistor, contacts and interconnects. The ... » read more

Electroplating IC Packages


The electrochemical deposition (ECD) equipment market for IC packaging is heating up as 2.5D, 3D and fan-out technologies begin to ramp. [getentity id="22817" e_name="Applied Materials"]  recently rolled out an ECD system for IC packaging. In addition, Lam Research, TEL and others compete in the growing but competitive ECD equipment market for packaging. ECD—sometimes referred to as pl... » read more

Following Multiple Patterns


The lithography market is in flux. Today, chipmakers plan to extend today’s 193nm immersion lithography and multi-patterning to at least 10nm and 7nm. For the most critical layers, though, it’s unclear if optical lithography can extend beyond 7nm. For that reason, chipmakers hope to insert extreme ultraviolet (EUV) lithography at 7nm and/or 5nm. To get a handle on the state of patterning, S... » read more

TFETs Cut Sub-Threshold Swing


One of the main obstacles to continued transistor scaling is power consumption. As gate length decreases, the sub-threshold swing (SS) — the gate voltage required to change the drain current by one order of magnitude — increases. As Qin Zhang, Wei Zhao, and Alan Seabaugh of Notre Dame explained in 2006, SS faces a theoretical minimum of 60 mV/decade at room temperature in conventional MO... » read more

← Older posts Newer posts →