Research Bits: Oct. 29


Micro-LED DUV maskless lithography Researchers from the University of Science and Technology of China, Anhui GaN Semiconductor, and Wuhan University developed a vertically integrated micro-LED array for deep ultraviolet (DUV) maskless photolithography. The team fabricated a DUV display integrated chip with 564 pixels-per-inch density that uses a three-dimensional vertically integrated devic... » read more

Driving Cost Lower and Power Higher With GaN


Gallium nitride is starting to make broader inroads in the lower-end of the high-voltage, wide-bandgap power FET market, where silicon carbide has been the technology of choice. This shift is driven by lower costs and processes that are more compatible with bulk silicon. Efficiency, power density (size), and cost are the three major concerns in power electronics, and GaN can meet all three c... » read more

Ferroelectric HEMT Reconfigurable Transistor (U. of Michigan)


A new technical paper titled "Fully epitaxial, monolithic ScAlN/AlGaN/GaN ferroelectric HEMT" was published by researchers at University of Michigan. “We can make our ferroelectric HEMT reconfigurable,” That means it can function as several devices, such as one amplifier working as several amplifiers that we can dynamically control. This allows us to reduce the circuit area and lower the... » read more

Characterization Of HEMT Vias


The Zeta-Series optical profilers provide accurate measurement and automated analysis of high aspect ratio structures such as HEMT vias using non-destructive and high throughput metrology techniques.  Introduction Wide bandgap semiconductor materials are extremely attractive for use in power electronics, due to their performance capability at high temperature, power and frequency. Among wide... » read more

Thinning of GaN-on-GaN HEMTs With A Laser Slicing Technique


New technical paper "Laser slice thinning of GaN-on-GaN high electron mobility transistors" from researchers at Nagoya University, Hamamatsu Photonics, and National Institute for Materials Science, Tsukuba. Abstract "As a newly developed technique to slice GaN substrates, which are currently very expensive, with less loss, we previously reported a laser slicing technique in this journal. In... » read more

Review on Driving Circuits for Wide-Bandgap Semiconductor Switching Devices for Mid- to High-Power Applications


Abstract: "Wide-bandgap (WBG) material-based switching devices such as gallium nitride (GaN) high electron mobility transistors (HEMTs) and silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) are considered very promising candidates for replacing conventional silicon (Si) MOSFETs for various advanced power conversion applications, mainly because of their capabi... » read more

Gate Drive Solutions For CoolGaN 600 V HEMTs


This paper explains the gate drive requirements for Infineon’s CoolGaN 600 V e-mode HEMTs. Various driving solutions are discussed, ranging from the standard RC-coupled driver to a new differential drive concept utilizing dedicated gate driver ICs. In half-bridge topologies, a hybrid configuration combining isolated and non-isolated drivers could be an exciting alternative. Practical applicat... » read more

Manufacturing Bits: Jan. 21


New high-frequency transistors The Fraunhofer Institute for Applied Solid State Physics IAF has developed a novel high-frequency transistor type—the metal oxide semiconductor HEMT or MOSHEMT. Still in R&D, Fraunhofer’s MOSHEMT has reached record frequencies of 640GHz. MOSHEMTs are designed for the 100GHz frequency ranges and above. Applications include communications, radar and sens... » read more

Power Semi Wars Begin


Several vendors are rolling out the next wave of power semiconductors based on gallium nitride (GaN) and silicon carbide (SiC), setting the stage for a showdown against traditional silicon-based devices in the market. Power semiconductors are specialized transistors that incorporate different and competitive technologies like GaN, SiC and silicon. Power semis operate as a switch in high-volt... » read more

Reliability Comparison of 28 V – 50 V GaN-on-SiC S-Band and X-Band Technologies


This paper discusses the reliability performance of Wolfspeed GaN/AlGaN high electron mobility transistor (HEMT) MMIC released process technologies, fabricated on 100 mm high purity semi-insulating (HPSI) 4H-SiC substrates. The intrinsic reliability performance of the 28 V and 40 V technologies, with 400 nm and 250 nm gate length, has been characterized with DC accelerated life test (DC-ALT), f... » read more

← Older posts