Feasibility and Potential of Quantum Computing For a Typical EDA Optimization Problem


A new technical paper titled "QCEDA: Using Quantum Computers for EDA" was published by researchers at Fraunhofer IESE, RPTU Kaiserslautern, DLR (Germany), and OTH Regensburg. Abstract "The field of Electronic Design Automation (EDA) is crucial for microelectronics, but the increasing complexity of Integrated Circuits (ICs) poses challenges for conventional EDA: Corresponding problems are of... » read more

Chip Industry Technical Paper Roundup: April 8


New technical papers recently added to Semiconductor Engineering’s library. [table id=214 /] Find last week’s technical paper additions here. » read more

Low-Overhead Fault-Tolerant Quantum Memory (IBM)


A new technical paper titled "High-threshold and low-overhead fault-tolerant quantum memory" was published by researchers at IBM Quantum. Abstract "The accumulation of physical errors prevents the execution of large-scale algorithms in current quantum computers. Quantum error correction promises a solution by encoding k logical qubits onto a larger number n of physical qubits, such t... » read more

Technical Paper Roundup: Sept 11


New technical papers added to Semiconductor Engineering’s library this week. [table id=136 /] (more…) » read more

The Utility Of Shallow Dynamic Circuits For Long-Range Entanglement On Large-Scale Quantum Devices


A technical paper titled “Efficient Long-Range Entanglement using Dynamic Circuits” was published by researchers at IBM Research, IBM T.J. Watson Research Center, University of Southern California, MIT-IBM Watson AI Lab, and IBM Quantum. Abstract: "Quantum simulation traditionally relies on unitary dynamics, inherently imposing efficiency constraints on the generation of intricate entangl... » read more

How A Fault-Tolerant Quantum Memory Could Be Realized Using Near-Term Quantum Processors With Small Qubit Overhead


A technical paper titled “High-threshold and low-overhead fault-tolerant quantum memory” was published by researchers at IBM T.J. Watson Research Center and MIT-IBM Watson AI Lab. Abstract: "Quantum error correction becomes a practical possibility only if the physical error rate is below a threshold value that depends on a particular quantum code, syndrome measurement circuit, and a decod... » read more

Chip Industry’s Technical Paper Roundup: July 5


New technical papers recently added to Semiconductor Engineering’s library: [table id=114 /] (more…) » read more

Demonstrating The Utility Of Quantum Computing In A Pre-Fault-Tolerant Era


A technical paper titled “Evidence for the utility of quantum computing before fault tolerance” was published by researchers at IBM Quantum, University of California Berkeley, RIKEN, and Lawrence Berkeley National Laboratory. Abstract: "Quantum computing promises to offer substantial speed-ups over its classical counterpart for certain problems. However, the greatest impediment to realizi... » read more

Uncovering Instabilities In Variational-Quantum Deep Q-Networks


By Maja Franz (1), Lucas Wolf (1), Maniraman Periyasamy (2), Christian Ufrecht (2), Daniel D. Scherer (2), Axel Plinge (2), Christopher Mutschler (2), Wolfgang Mauerer (1,3) (1) Technical University of Applied Sciences, Regensburg, Germany, (2) Fraunhofer-IIS, Fraunhofer Institute for Integrated Circuits IIS, Division Positioning and Networks, Nuremberg, Germany, (3) Siemens AG, Corporate ... » read more

Technical Paper Round-up: May 17


New technical papers added to Semiconductor Engineering’s library this week. [table id=27 /] Semiconductor Engineering is in the process of building this library of research papers. Please send suggestions (via comments section below) for what else you’d like us to incorporate. If you have research papers you are trying to promote, we will review them to see if they are a go... » read more

← Older posts