What Will Intel Do Next?


The writing is on the wall for big processor makers. Apple, Amazon, Facebook and Google are developing their own processors. In addition, there are more than 30 startups developing various types of AI accelerators, as well as a field of embedded FPGA vendors, a couple of discrete FPGA makers, and a slew of soft processor cores. This certainly hasn't been lost on Intel. As the world's largest... » read more

Bridges Vs. Interposers


The number of technology options continue to grow for advanced packaging, including new and different ways to incorporate so-called silicon bridges in products. For some time, Intel has offered a silicon bridge technology called Embedded Multi-die Interconnect Bridge (EMIB), which makes use of a tiny piece of silicon with routing layers that connects one chip to another in an IC package. In ... » read more

The Case For Chiplets


Discussion about chiplets is growing as the cost of developing chips at 10/7nm and beyond passes well beyond the capabilities of many chipmakers. Estimates for developing 5nm chips (the equivalent 3nm for TSMC and Samsung) are well into the hundreds of millions of dollars just for the NRE costs alone. Masks costs will be in the double-digit millions of dollars even with EUV. And that's assum... » read more

Architecture, Materials And Software


AI, machine learning and autonomous vehicles will require massive improvements in performance, at the same power consumption level (or better), over today's chips. But it's obvious that the usual approach of shrinking features to improve power/performance isn't going to be sufficient. Scaling will certainly help, particularly on the logic side. More transistors are needed to process a huge i... » read more

The Race To Mass Customization


The number of advanced packaging options continues to rise. The choices now include different materials for interposers, at least a half-dozen fan-outs, not to mention hybrid fan-out/3D stacking, system-in-package, flip-chip and die-to-die bridges. There are several reasons for all of this activity. First, advanced packaging offers big improvements in performance and power that cannot be ac... » read more

Cheaper Packaging Options Ahead


Lower-cost packaging options and interconnects are either under development or just being commercialized, all of which could have a significant impact on the economics of advanced packaging. By far, the most cited reason why companies don't adopt advanced [getkc id="27" kc_name="packaging"] is cost. Currently, silicon [getkc id="204" kc_name="interposers"] add about $30 to the price of a med... » read more

Warp Speed Ahead


The computing world is on a tear, but not just in one direction. While battery-powered applications are focused on extending the time between charges or battery replacements, there is a whole separate and growing market for massive improvements in speed. Ultimately, this is where quantum computing will play a role, probably sometime in the late 2020/early 2030 timeframe, according to multipl... » read more

Advanced Packaging Still Not So Simple


The promise of advanced packaging comes in multiple areas, but no single packaging approach addresses all of them. This is why there is still no clear winner in the packaging world. There are clear performance benefits, because the distance between two chips in a package can be significantly shorter than the distance that signals have to travel from one side of a die to another. Moreover, wi... » read more

What’s What In Advanced Packaging


Ever open the body of your smartphone (perhaps unintentionally) and see small, black rectangles stuck on a circuit board? Those black rectangles are packaged chips. The external chip structure protects the fragile integrated circuits inside, as well as dissipates heat, keeps chips isolated from each other, and, importantly, provides connection to the circuit board and other elements. The manufa... » read more

Noise Abatement


[getkc id="285" kc_name="Noise"] is a fact of life. Almost everything we do creates noise as a by-product and quite often what is a signal to one party is noise to another. Noise cannot be eliminated. It must be managed. But is noise becoming a larger issue in chips as the technology nodes get smaller and packaging becomes more complex? For some, the answer is a very strong yes, while for ot... » read more

← Older posts