GPIO IP For Automotive Functional Safety


By Nidhi Bhasin, Shivakumar Chonnad, Vladimir Litovtchenko, and Sowjanya Syamala The prevalence and complexity of electronics and software (EE systems) in automotive applications are increasing with every new generation of car. The critical functions within the system on a chip (SoC) involve hardware and software that perform automotive-related signal communication at high data rates to and ... » read more

Functional Safety: Current Status And Perspectives With A View Toward Standardization Bodies


Functional safety is a topic highly driven by standards. This is due in part to legislation and regulation, but it also arises from the fact that functional safety spans a wide range of fields. Even before specific standards were introduced, there were products that met the social consensus on safety. For example, carmakers were making cars that were safe and incorporated electrical and elec... » read more

ISO 26262 – Law Or Framework?


The ISO 26262 standard is a weighty series of documents that many believe has all the force of law or regulation; however, it is not a dictate. It is an agreement on best practices for participants in the vehicle value chain to follow to ensure safety as far as the industry understands it today. There is no monetary fine if the standard is not followed, though it will be difficult to sell autom... » read more

Making Autonomous Driver Chips Safe From The Top Down


It’s easy to think of electronics applications in which the chips must be ultra-safe: nuclear power plants, aircraft, weapons systems, and implanted medical devices. Autonomous vehicles, capable of self-driving with only the electronics in control, are rapidly emerging to join this list. These vehicles must be “safe” in all the usual colloquial ways, but they also must meet a very specifi... » read more

Automotive Safety Island


The promise of autonomous vehicles is driving profound changes in the design and testing of automotive semiconductor parts. Automotive ICs, once deployed for simple functions like controlling windows, are now performing complex functions related to advanced driver-assist systems (ADAS) and autonomous driving applications. The processing power required results in very large and complex ICs that ... » read more

Automotive AI Hardware: A New Breed


Arteris IP functional safety manager Stefano Lorenzini recently presented “Automotive Systems-on-Chip (SoCs) with AI/ML and Functional Safety” at the Linley Processor Conference. A main point of the presentation was that conventional wisdom on AI hardware markets is binary. There’s AI in the cloud: Big, power-hungry, general-purpose. And there’s AI at the edge: Small, low power, limited... » read more

Three Steps To ISO 26262 Fault Campaign Closure


The complexity of automotive ICs continues to grow exponentially, challenging even the most veteran teams to deliver innovative products to market while simultaneously ensuring safety through the operational life of the product. This is the purpose of safety verification. Its primary objective is to understand whether the safety architecture sufficiently prevents random failures from violati... » read more

The Good And Bad Of Auto IC Updates


Keeping automobiles updated enough to avoid problems is becoming increasingly difficult as more complex electronics are added into vehicles, and as the lifetimes of those devices are extended to a decade or more. Modern vehicles are full of electronics. In fact, the value of electronic devices used in modern vehicles is expected to double in the next 10 years, growing to $469 billion by 2030... » read more

Orchestrating An Efficient ISO 26262 Fault Campaign


The primary objective of a fault campaign is to understand whether the safety architecture sufficiently prevents random failures from violating ISO 26262 safety requirements for both commercial and passenger automobiles. To complete fault injection, faults are injected and propagated in the design to validate the functional correctness of the safety mechanisms and to classify each fault. Fault ... » read more

Adding Value With Unit Level Traceability (ULT) In Automotive Packaging


Automotive product traceability has existed in one form or another for several decades. Traceability generally refers to tracking and tracing each component that comprises every subsystem in a car. Traditionally, this has been achieved with direct part marking on mechanical or electronic components, using 1D or 2D barcodes or radio-frequency identification (RFID). Since vehicle recalls are cost... » read more

← Older posts Newer posts →