Power/Performance Bits: May 14


Detecting malware with power monitoring Engineers at the University of Texas at Austin and North Carolina State University devised a way to detect malware in large-scale embedded computer systems by monitoring power usage and identifying unusual surges as a warning of potential infection. The method relies on an external piece of hardware that can be plugged into the system to observe and m... » read more

Power/Performance Bits: April 16


Faster CNN training Researchers at North Carolina State University developed a technique that reduces training time for deep learning networks by more than 60% without sacrificing accuracy. Convolutional neural networks (CNN) divide images into blocks, which are then run through a series of computational filters. In training, this needs to be repeated for the thousands to millions of images... » read more

Power/Performance Bits: Mar. 11


Reading qubits faster Researchers at Aalto University and VTT Technical Research Centre of Finland propose a faster way to read information from qubits, the building blocks of quantum computers. Currently, they are extremely sensitive to disruption even in cryogenic environments, holding quantum information for less than a millisecond. In the method now used to read information from a qubit... » read more

Manufacturing Bits: June 5


Water insulators North Carolina State University, the Oak Ridge National Laboratory (ORNL) and Texas A&M University have developed what could be considered as water insulators for energy storage applications. Basically, researchers sandwiched water between two materials, enabling higher power storage devices with more efficiency. More specifically, in the lab, researchers developed a compou... » read more

Manufacturing Bits: March 6


Security ICs with multi-beam Leti, a research institute of CEA Tech, and Mapper Lithography have developed a new application for its multi-beam, direct-write lithography technology—security. In 2016, Mapper Lithography introduced the FLX-1200, a direct-write, multi-beam e-beam system. Using a 5-kV acceleration voltage, a beam generator creates an electron beam about 3cm in diameter. Then,... » read more

Power/Performance Bits: Jan. 9


Eel-inspired power Researchers at the University of Michigan, the University of Fribourg, and the University of California-San Diego developed soft power cells with the potential to power implanted medical devices. Made of hydrogel and salt, the soft cells form the first potentially biocompatible artificial electric organ that generates more than 100 volts at a low current, the team says, enou... » read more

Power/Performance Bits: Sept. 26


Long-range communication Researchers at the University of Washington developed devices that run on almost zero power can transmit data across distances of up to 2.8 kilometers. The long-range backscatter system, which uses reflected radio signals to transmit data at extremely low power, achieved reliable coverage throughout 4800-square-foot house, an office area covering 41 rooms and a one-acr... » read more

DARPA CHIPS Program Pushes For Chiplets


While the semiconductor industry plugs away at More Than Moore innovation, the U.S. government is guiding its own SoC development. A new program kicked off last year called ‘Common Heterogeneous Integration and IP Reuse Strategies’ or CHIPS to take its own approach the incredibly high cost of SoC design and manufacturing. DARPA said it recognizes that the explosive growth in mobile and t... » read more

Power/Performance Bits: May 16


Chaos-based IC Researchers at North Carolina State University and the College of Wooster developed a three transistor nonlinear, chaos-based integrated circuit combining digital and analog components, which they hope can improve computational power by enabling processing of a larger number of inputs. In chaos-based, nonlinear circuits, one circuit can perform multiple computations instead... » read more

Manufacturing Bits: Oct. 25


GaN-on-GaN power semis Power semiconductors based on gallium nitride (GaN) are heating up in the market. Typically, suppliers are shipping devices using a GaN-on-silicon process. These devices are available with blocking voltages of up to 650 volts. Going beyond 650 volts is problematic, however. GaN-on-silicon processes suffer from lattice mismatches, cost and other issues. At the ... » read more

← Older posts