Research Bits: Jan. 3


Printing electronics on curved surfaces Researchers from North Carolina State University have demonstrated a new technique for directly printing electronic circuits onto curved and corrugated surfaces. They have used the technique to create prototype “smart” contact lenses, pressure-sensitive latex gloves, and transparent electrodes. “There are many existing techniques for creating pr... » read more

Week In Review: Design, Low Power


Revenue for the top 10 IC design houses globally hit US$ 39.6 billion in 2Q22, a 32% growth over the prior year, according to a Trendforce report. The firm contends this growth trend will be difficult to maintain due to the high preceding base period and overall worse market conditions. Renesas introduced a RISC-V MCU specifically optimized for advanced motor control systems. The new ASSP in... » read more

Research Bits: Aug. 16


Protein-based circuits Researchers from North Carolina State University and University of Cambridge created self-assembled, protein-based circuits that can perform simple logic functions and take advantage of an electron’s properties at quantum scales. A challenge in creating molecular circuits is the unreliability as circuit size decreases. At the quantum scale, electrons behave like wav... » read more

Research Bits: Aug. 8


Speeding NVM encryption Researchers from North Carolina State University propose a way to speed up encryption and file system performance for non-volatile memory (NVM). “NVMs are an emerging technology that allows rapid access to the data, and retains data even when a system crashes or loses power,” said Amro Awad, an assistant professor of electrical and computer engineering at North C... » read more

Silicon-based Power Semis Face Challenges


Suppliers of power semiconductors continue to develop and ship devices based on traditional silicon technology, but silicon is nearing its limits and faces increased competition from technologies like GaN and SiC. In response, the industry is finding ways to extend traditional silicon-based power devices. Chipmakers are eking out more performance and prolonging the technology, at least in th... » read more

Power/Performance Bits: Sept. 28


Pneumatic memory Engineers at the University of California Riverside developed a pneumatic memory that can be used to control soft robots. Pneumatic soft robots use pressurized air to move soft, rubbery limbs and grippers, making them ideal for delicate tasks as well as safer to be around. However, they still require electronic valves and computers to control and maintain positions. The ... » read more

The Silicon Carbide Race Begins


The growing adoption of silicon carbide (SiC) for a variety of automotive chips has reached the tipping point where most chipmakers now consider it a relatively safe bet, setting off a scramble to stake a claim and push this wide-bandgap technology into the mainstream. SiC holds great promise for a number of automotive applications, particularly for battery electric vehicles. It can extend d... » read more

Power/Performance Bits: July 20


Shrinking RFID chips Researchers at North Carolina State University built a new, tiny RFID chip. They expect the chip to help drive down costs for RFID tags, making it possible to embed them in more things for supply chain security. "As far as we can tell, it's the world's smallest Gen2-compatible RFID chip," said Paul Franzon, Professor of Electrical and Computer Engineering at NC State. I... » read more

Week In Review: Design, Low Power


Siemens Digital Industries Software acquired Fractal Technologies, a provider of tools for IP validation and comparison checks of standard cell libraries, IO, and hard IP that reports mismatches or modeling errors, as well as comparing new IP releases close to tape-out. Siemens plans to add Fractal’s technology to the Xcelerator portfolio, joining the Solido software product family, which inc... » read more

Power/Performance Bits: April 20


Multiplexing twisted light Researchers from University of California San Diego and University of California Berkeley found a way to multiplex light by using discrete twisting laser beams from antennas made up of concentric rings. "It's the first time that lasers producing twisted light have been directly multiplexed," said Boubacar Kanté, an Associate Professor at UC Berkeley's Department ... » read more

← Older posts Newer posts →