Power/Performance Bits: Sept. 29


Implantable transmitter Researchers from Purdue University developed a fully implantable, wirelessly powered 2.4GHz radio-frequency transmitter chip for wireless sensor nodes and biomedical devices. The team says the transmitter chip consumes the lowest amount of energy per digital bit published to date, consuming an active-mode power of 70 μW at 10 Mbps while radiating -33 dBm of power, r... » read more

Power/Performance Bits: July 28


Programmable photonics Researchers from the University of Southampton developed a method for making programmable  integrated switching units on a silicon photonics chip. By using a generic optical circuit that can be fabricated in bulk then later programmed for specific applications, the team hopes to reduce production costs. "Silicon photonics is capable of integrating optical devices and... » read more

Power/Performance Bits: Feb. 25


Thinner, flexible touchscreens Researchers from RMIT University, University of New South Wales, and Monash University developed a thin, flexible electronic material for touchscreens. The material is 100 times thinner than current touchscreen materials. The new screens are still based on indium-tin oxide (ITO), a common touchscreen material. However, a liquid metal printing approach was used... » read more

Power/Performance Bits: Sept. 24


Textiles for energy storage Scientists at RMIT University developed a way to laser print waterproof textiles with graphene supercapacitors for embedded energy storage. The process takes three minutes to create a 10x10cm patch. The electronic textile is based on nylon coated with PDMS on one side for waterproofing. The other side was paint coated with graphene oxide and a binder to form thin... » read more

Power/Performance Bits: July 10


Wearable heart monitoring Researchers at the University of Texas at Austin developed a lightweight, stretchy heart monitoring patch that can be worn externally. Along with being easy to wear, the graphene-based 'e-tattoo' is more accurate than existing electrocardiograph machines, according to the team. The e-tattoo measures cardiac health using both electrocardiograph and seismocardiograph... » read more

Power/Performance Bits: Mar. 11


Reading qubits faster Researchers at Aalto University and VTT Technical Research Centre of Finland propose a faster way to read information from qubits, the building blocks of quantum computers. Currently, they are extremely sensitive to disruption even in cryogenic environments, holding quantum information for less than a millisecond. In the method now used to read information from a qubit... » read more

Power/Performance Bits: Mar. 5


Solar chemical manufacturing Researchers at RMIT University, CSIRO Manufacturing, and University of Melbourne developed a nano-enhanced material that can capture 99% of light and use it to power chemical reactions. One of the world's biggest energy users, the chemical manufacturing industry accounts for about 10% of global energy consumption and 7% of industrial greenhouse gas emissions. In th... » read more

Power/Performance Bits: April 3


Long-lived data storage Scientists from RMIT University and Wuhan Institute of Technology demonstrated a next-generation optical disk with up to 10TB capacity and a six-century lifespan using gold nanoparticles. The technology could radically improve the energy efficiency of data centers according to the researchers, using 1000 times less power than a hard disk center by requiring far less ... » read more

Power/Performance Bits: Mar. 20


Proton battery prototype A team at RMIT University built a prototype rechargeable proton battery combining hydrogen fuel cells and battery-based electrical power that has the potential, with further development, to store more energy than currently-available lithium ion batteries. The working prototype proton battery uses an activated carbon electrode for solid-state storage of hydrogen with... » read more

Power/Performance Bits: Mar. 13


Wireless charging Engineers at the University of Washington developed a method to safely charge a smartphone wirelessly using a laser, potentially as quickly as a standard USB cable. Safety features of the system include a reflector-based mechanism to shut off the laser and heatsinks. The charging beam is generated by a laser emitter that the team configured to produce a focused beam in the... » read more

← Older posts