Research Bits: November 6


Fast superatomic semiconductor Researchers from Columbia University created a fast and efficient superatomic semiconductor material based on rhenium called Re6Se8Cl2. Rather than scattering when they come into contact with phonons, excitons in Re6Se8Cl2 bind with phonons to create new quasiparticles called acoustic exciton-polarons. Although polarons are found in many materials, those in Re6Se... » read more

Chip Industry’s Technical Paper Roundup: October 24


New technical papers added to Semiconductor Engineering’s library this week. [table id=157 /] More Reading Technical Paper Library home » read more

FeFET Multi-Level Cells For In-Memory Computing In 28nm


A technical paper titled “First demonstration of in-memory computing crossbar using multi-level Cell FeFET” was published by researchers at Robert Bosch, University of Stuttgart, Indian Institute of Technology Kanpur, Fraunhofer IPMS, RPTU Kaiserslautern-Landau, and Technical University of Munich. Abstract: "Advancements in AI led to the emergence of in-memory-computing architectures as a... » read more

Chip Industry’s Technical Paper Roundup: September 26


New technical papers recently added to Semiconductor Engineering’s library: [table id=146 /] More Reading Technical Paper Library home » read more

Chip Industry’s Technical Paper Roundup: Sept 19


New technical papers added to Semiconductor Engineering’s library this week. [table id=141 /] More Reading Technical Paper Library home » read more

Formally Verifying Data-Oblivious Behavior In HW Using Standard Property Checking Techniques


A technical paper titled “A Scalable Formal Verification Methodology for Data-Oblivious Hardware” was published by researchers at RPTU Kaiserslautern-Landau and Stanford University. Abstract: "The importance of preventing microarchitectural timing side channels in security-critical applications has surged in recent years. Constant-time programming has emerged as a best-practice technique... » read more