How To Raise Reliability, Availability, And Serviceability Levels For HPC SoCs


By Charlie Matar, Rita Horner, and Pawini Mahajan While once the domain of large data centers and supercomputers, high-performance computing (HPC) has become rather ubiquitous and, in some cases, essential in our everyday lives. Because of this, reliability, availability, and serviceability, or RAS, is a concept that more HPC SoC designers should familiarize themselves with. RAS may sound... » read more

Hunting For Hardware-Related Errors In Data Centers


The semiconductor industry is urgently pursuing design, monitoring, and testing strategies to help identify and eliminate hardware defects that can cause catastrophic errors. Corrupt execution errors, also known as silent data errors, cannot be fully isolated at test — even with system-level testing — because they occur only under specific conditions. To sort out the environmental condit... » read more

Ramping Up IC Predictive Maintenance


The chip industry is starting to add technology that can predict impending failures early enough to stave off serious problems, both in manufacturing and in the field. Engineers increasingly are employing in-circuit monitors embedded in SoC designs to catch device failures earlier in the production flow. But for ICs in the field, data tracing from design to application use only recently has ... » read more

Ensuring Memory Reliability Throughout the Silicon Lifecycle


By Anand Thiruvengadam and Guy Cortez Memories are everywhere in modern electronics. Discrete memory chips account for much of the space on printed circuit boards (PCBs). Embedded memories consume much of the floorplan in system-on-chip (SoC) devices. Many multi-die chip configurations, including 2.5D/3DIC devices, are driven by the need for faster memory access. Designing and verifying memo... » read more

Automotive Applications Demand Silicon Lifecycle Management


Every electrical engineer learns early in university studies that automobiles are a highly demanding environment for electronics. Temperature and humidity extremes, noise and vibration, electrical interference, exposure to alpha particles, and other factors all make it hard to design and manufacture chips that will operate properly under all conditions. These challenges are exacerbated as chips... » read more

Optimizing Vmin With Path Margin Monitors


By Firooz Massoudi and Ash Patel Choosing the right operating voltage for various digital blocks within a semiconductor device is one of the most important tasks faced by chip designers. Operating voltage has major effects on performance, power consumption, and reliability. Increasing the voltage generally increases performance, but at the cost of more power and higher lifetime operating cos... » read more

Software Infrastructure For Silicon Lifecycle Management


Semiconductor technology continues to deliver higher levels of logic density in the era of nanometer processes. System-on-chip (SoC) teams can deliver even higher functionality when coupled with the massive integration possibilities of three-dimensional integrated circuit (3DIC) architectures. However, this growth must be matched by increases in capabilities and productivity in the collection a... » read more

Chip Data Joins The Party


Perhaps you’ve heard of silicon lifecycle management (product lifecycle management for your semiconductor) but considered it a “far-future” practice that you can safely ignore for now. While many pieces of a complete silicon lifecycle solutions (SLS) are not yet in place, the components are coming together every day. Today, in fact, Siemens’ Tessent offers a new suite of software ser... » read more

Bridging IC Design, Manufacturing, And In-Field Reliability


Experts at the Table: Semiconductor Engineering sat down to talk about silicon lifecycle management and how that can potentially glue together design, manufacturing, and devices in the field, with Prashant Goteti, principal engineer at Intel; Rob Aitken, R&D fellow at Arm; Zoe Conroy, principal hardware engineer at Cisco; Subhasish Mitra, professor of electrical engineering and computer sci... » read more

Closing The Post-Silicon Timing Analysis Gap


Accurate static timing analysis is one of the most important steps in the development of advanced node semiconductor devices. Performance numbers are included in chip and system specifications from the earliest marketing requirements. The architects and designers carefully determine clock cycle times that can achieve the required performance using the chosen high-level architecture, micro-archi... » read more

← Older posts Newer posts →