What Machine Learning Can Do In Fabs


Semiconductor Engineering sat down to discuss the issues and challenges with machine learning in semiconductor manufacturing with Kurt Ronse, director of the advanced lithography program at Imec; Yudong Hao, senior director of marketing at Onto Innovation; Romain Roux, data scientist at Mycronic; and Aki Fujimura, chief executive of D2S. What follows are excerpts of that conversation. L-R:... » read more

Building A Safety Verification Flow


Sal Alvarez, senior manager of application engineering at Synopsys, explains how safety verification differs from functional verification, what changes with failure mode effects analysis, and how to determine and verify the effectiveness of safety features. » read more

Timing Closure At 7/5nm


Mansour Amirfathi, director of application engineering at Synopsys, examines how to determine if assumptions about design are correct, how many cycles are needed for a particular operation and why this is so complicated, and what happens if signals get out of phase. » read more

Manufacturing Speed And Agility Enabled By Turnkey HPC Solutions


Manufacturers face growing competition as new players enter the global market all the time. To stay ahead of rivals, they increasingly rely on digital modeling and simulation tools for product design, analysis and testing with the help of HPC and CAE. So how is HPC enabling innovation for manufacturers from small to large? This white paper covers: Using HPC to accelerate product develo... » read more

Test Is Becoming A Horizontal Process


Semiconductor test, once a discrete part of a well-orchestrated series of manufacturing steps, is looking more like a process that extends from the early concept stage in design to the end of life of whatever system that chip ultimately is used for. This has important ramifications for safety-critical markets in general, and the semiconductor industry in particular. Both worlds have been inc... » read more

Speeding Up FPGA Development


Selaheddin Hetalani, field application engineer at OneSpin Solutions, talks about why it’s getting harder to design and debug FPGAs, how much design time can be saved through formal techniques, and why just relying on programmability isn’t the most efficient approach. » read more

Simulation: Go Parallel Or Go Home


Although complemented by other valuable technologies, functional simulation remains at the heart of semiconductor verification. Every chip project still develops a testbench, usually compliant with the Universal Verification Methodology (UVM), and a large test suite. Constrained-random stimulus generation has largely replaced hand-crafted tests, but at the expense of much more simulation time. ... » read more

Hybrid Prototyping


David Svensson, applications engineer in Synopsys’ Verification Group, explains how a virtual transaction logic model can be connected to develop hardware-dependent drivers before RTL actually exists, why this is now critical for large, complex designs, and how to find the potential bottlenecks and debug both software and hardware. » read more

Wrestling With Variation In Advanced Node Designs


Variation is becoming a major headache at advanced nodes, and issues that used to be dealt with in the fab now must be dealt with on the design side, as well. What is fundamentally changing is that margin, which has long been used as a buffer for variation and other manufacturing process-related problems, no longer works in these leading-edge designs for a couple of reasons. First, margin im... » read more

The Four Benefits of Simulation-Driven Design


Simulation-driven design involves using simulation early, often, and throughout the design cycle to make better informed decisions, explore more alternatives and verify performance. This report presents the business benefits of taking a simulation-driven design approach, enabled by engineers, across the design cycle. It focuses on the four core sources of value for simulation-driven design: inc... » read more

← Older posts