Power/Performance Bits: July 3


Graphene foam devices Scientists at Rice University developed a method for building conductive, three-dimensional objects out of graphene foam, which they say could offer new possibilities for energy storage and flexible electronic sensor applications. The same lab initially created laser-induced graphene, or LIG, in 2014. The process involves heating inexpensive polyimide plastic sheets wi... » read more

Preparing For AI


Suppose an autonomous car is coming up an on-ramp onto a bridge. The ramp is fine, but the bridge is icy, and there’s an overturned bus full of children blocking several lanes. Children are evacuating through the windows and milling around on the pavement. There isn’t time to stop, even with the better-than-human reaction time an autonomous car might have. Swerving to one side might send... » read more

Manufacturing Bits: May 1


Adaptive materials The U.S. Army Research Laboratory (ARL) and the University of Maryland have developed a technique to make adaptive materials. Using ultraviolet light, researchers have devised a way that causes a composite material to become stiffer and stronger on-demand. This in turn could enable a variety of new capabilities for the U.S. military, such as rotorcraft design. In this... » read more

Power/Performance Bits: May 1


Low power video streaming Engineers at the University of Washington developed a method for streaming HD video from a lightweight, wearable camera. The researchers used backscatter to send pixel data to a more powerful device, such as a smartphone or laptop, for power-hungry tasks like video processing and compression that have made a lightweight streaming camera out of reach. The pixels in ... » read more

Manufacturing Bits: April 3


World's brightest accelerator Japan’s High Energy Accelerator Research Organization (KEK) is readying what is considered the world’s most luminous or brightest particle accelerator. The system, dubbed the SuperKEKB, combines an electron-positron collider with a new and advanced detector. The storage ring system is designed to explore and measure rare decays of elementary particles, such... » read more

System Bits: Feb. 20


An evolution in electronics Restoring some semblance to those who have lost the sensation of touch has been a driving force behind Stanford University chemical engineer Zhenan Bao’s decades-long quest to create stretchable, electronically-sensitive synthetic materials. [caption id="attachment_24131783" align="aligncenter" width="300"] Zhenan Bao, the K.K. Lee professor of chemical engineer... » read more

Power/Performance Bits: Sept. 12


Water-based li-ion battery Researchers at the University of Maryland and the U.S. Army Research Laboratory developed a lithium-ion battery that uses a water-salt solution as its electrolyte and reaches the 4.0 volt mark desired for household electronics, without the fire and explosive risks associated with some commercially available non-aqueous lithium-ion batteries. The battery provides i... » read more

Power/Performance Bits: Dec. 27


Tiny diamond radio Researchers at Harvard built the world's smallest radio receiver, built out of an assembly of atomic-scale defects in pink diamonds. The radio uses tiny imperfections in diamonds called nitrogen-vacancy (NV) centers. To make NV centers, researchers replace one carbon atom in a diamond crystal with a nitrogen atom and remove a neighboring atom -- creating a system that i... » read more

System Bits: Aug. 9


Using trapped ions as quantum bits MIT researchers reminded that quantum computers are largely hypothetical devices that could perform some calculations much more rapidly than conventional computers can, and instead of the bits of classical computation — which can represent 0 or 1 — quantum computers consist of quantum bits, or qubits, which can, in some sense, represent 0 and 1 simultaneo... » read more

How To Build Systems In Package


The semiconductor industry is racing to define a series of road maps for semiconductors to succeed the one created by the ITRS, which will no longer be updated, including a brand new one focused on heterogeneous integration. The latest entry will establish technology targets for integration of heterogeneous multi-die devices and systems. It has the support of IEEE's Components, Packaging and... » read more

← Older posts