Pyrolyzed Cellulose Nanofiber Paper (CNP) Semiconductor with a 3D Network Structure


Abstract Semiconducting nanomaterials with 3D network structures exhibit various fascinating properties such as electrical conduction, high permeability, and large surface areas, which are beneficial for adsorption, separation, and sensing applications. However, research on these materials is substantially restricted by the limited trans-scalability of their structural design and tunability of... » read more

Silicon-based Power Semis Face Challenges


Suppliers of power semiconductors continue to develop and ship devices based on traditional silicon technology, but silicon is nearing its limits and faces increased competition from technologies like GaN and SiC. In response, the industry is finding ways to extend traditional silicon-based power devices. Chipmakers are eking out more performance and prolonging the technology, at least in th... » read more

Can Coherent Optics Reduce Data-Center Power?


As optical bandwidth requirements increase, system designers are turning to “coherent” modulation schemes that can place more data on the same laser light, and lower power over long connections. A newer question is whether those savings could be achieved for short connections within data centers, as well. “Coherent is the direction everything's moving, because for a given system and... » read more

Manufacturing Bits: April 5


Open access superconducting magnets The National High Magnetic Field Laboratory or MagLab has opened the world's strongest superconducting magnet to users. In the works for eight years, the 32 tesla (T) all-superconducting magnet enables scientists to conduct research for various applications, such as quantum matter experiments. The system is called the SCM-32 T. MagLab develops several ... » read more

Power/Performance Bits: Dec. 15


Graphite films for cooling electronics Researchers at King Abdullah University of Science and Technology (KAUST) developed a way to make a carbon material well suited to dissipating heat in electronic devices. Graphite films are frequently used for heat management. "However, the method used to make these graphite films, using polymer as a source material, is complex and very energy intensiv... » read more

Manufacturing Bits: Sept. 29


Exploring chemical reactions using EUV The University of Tokyo has established a facility to study fast chemical reactions using a coherent extreme ultraviolet light source. The new coherent extreme ultraviolet (XUV) source facility enables researchers to explore time-dependent phenomena, such as ultrafast chemical reactions of biological or physical samples. Located in an underground fa... » read more

The Evolution Of High-Level Synthesis


High-level synthesis is getting yet another chance to shine, this time from new markets and new technology nodes. But it's still unclear how fully this technology will be used. Despite gains, it remains unlikely to replace the incumbent RTL design methodology for most of the chip, as originally expected. Seen as the foundational technology for the next generation of EDA companies around the ... » read more

Manufacturing Bits: Aug. 18


Quantum Internet The U.S. Department of Energy (DOE) recently unveiled a strategy to develop a quantum Internet in the United States. DOE’s 17 National Laboratories will serve as the backbone of the quantum Internet, which will rely on the laws of quantum mechanics to control and transmit information over a network. Currently in its initial stages of development, the quantum Internet coul... » read more

Manufacturing Bits: May 26


7-level nanosheets The 2020 Symposia on VLSI Technology & Circuits for the first time will be held as a virtual conference. The event, to be held from June 15-18, is organized around the theme “The Next 40 Years of VLSI for Ubiquitous Intelligence.” Among the papers at the event include advanced nanosheet transistors, 3D stacked memory devices and even an artificial iris. At the ... » read more

Power/Performance Bits: March 31


Tellurium transistors Researchers from Purdue University, Washington University in St Louis, University of Texas at Dallas, and Michigan Technological University propose the rare earth element tellurium as a potential material for ultra-small transistors. Encapsulated in a nanotube made of boron nitride, tellurium helps build a field-effect transistor with a diameter of two nanometers. �... » read more

← Older posts Newer posts →