中文 English

Research Bits: Oct. 10


Disposable water-activated battery Researchers at Empa developed a water-activated disposable paper battery that could be used in low-power, single-use disposable electronics such as smart labels for tracking objects, environmental sensors, and medical diagnostic devices. The battery is made of at least one cell measuring one centimeter squared and consisting of three inks printed onto a re... » read more

Week In Review: Design, Low Power


Nvidia again made its case for acquiring Arm to the UK's Competition and Markets Authority (CMA). “Arm is a private for-profit business at a crossroads. After acquiring Arm several years ago, SoftBank increased Arm’s headcount, hoping to spur long-term growth in several markets, including data center and personal computer, long dominated by Intel and x86. SoftBank’s investment phase has c... » read more

Manufacturing Bits: Dec. 21


Tiny electronic fountain pens Karlsruhe Institute of Technology (KIT) and Taiyuan University of Technology have developed what resembles a tiny electronic fountain pen, a technology that can pattern and deposit small structures on surfaces. The system from KIT and Taiyuan University is actually a high-precision tabletop microplotter, which is used to print or deposit materials for printed e... » read more

Batteries Have Moving Parts


The race is on to make lithium-ion batteries safer, to increase the amount of energy that can be drawn out of these devices, and to reduce the time it takes to charge them up again. Transistors and other electronic components depend on the movement of electrons, which are effectively massless and dimensionless relative to the semiconductor, metal, and dopant atoms that surround them. A batte... » read more

The Race To Make Better Qubits


One of the big challenges in quantum computing is getting qubits to last long enough to do something useful with them. After decades of research, there now appears to be tangible progress. The challenge with any new semiconductor technology is to improve performance by one or more orders of magnitude without discarding a half-century of progress in other areas. Qubits based on silicon quantu... » read more

Manufacturing Bits: June 7


High-voltage superjunction SiC devices The University of Warwick and Cambridge Microelectronics have presented a paper on the latest effort to develop of a new type silicon carbide (SiC) power device called a SiC superjunction Schottky diode. Researchers have simulated and optimized the development of 4H-SiC superjunction Schottky diodes at a voltage class of 1700 volts, aiming for breakdow... » read more

Power/Performance Bits: Oct. 20


Benchmarking quantum layout synthesis Computer scientists at the University of California Los Angeles found that current compilers for quantum computers are inhibiting optimal performance and argue that better quantum compilation design could help improve computation speeds up to 45 times. The team designed a family of benchmark quantum circuits with known optimal depths or sizes, which cou... » read more

Power/Performance Bits: Oct. 1


Nighttime power Researchers at UCLA and Stanford University created a low-cost device that harnesses radiative cooling to provide a small amount of renewable energy at night. While the device only provides a small amount of power, it could be useful for areas without reliable electricity or access to batteries. Radiative cooling happens when a surface that faces the sky emits heat as therma... » read more

Power/Performance Bits: July 15


Liquefied gas electrolyte Researchers at UC San Diego, U.S. Army Research Laboratory, and South 8 Technologies developed an electrolyte that could enable the replacement of the graphite anode in lithium-ion batteries with lithium-metal. Such a change would increase energy density 50% at the cell level, making for lighter batteries with more capacity. However, lithium-metal anodes are not compa... » read more

Inspection, Metrology Challenges Grow For SiC


Inspection and metrology are becoming more critical in the silicon carbide (SiC) industry amid a pressing need to find problematic defects in current and future SiC devices. Finding defects always has been a challenging task for SiC devices. But it’s becoming more imperative to find killer defects and reduce them as SiC device vendors begin to expand their production for the next wave of a... » read more

← Older posts