Process Variation Analysis of Device Performance Using Virtual Fabrication


A new methodology is demonstrated to assess the impact of fabrication inherent process variability on 14-nm fin field effect transistor (FinFET) device performance. A model of a FinFET device was built using virtual device fabrication and testing. The model was subsequently calibrated on Design of Experiment corner case data that had been collected on a limited number of processed fab wafers. W... » read more

The Impact Of EUV Resist Thickness On Via Patterning Uniformity


Via patterning at advanced nodes requires extremely low critical dimension (CD) values, typically below 30nm. Controlling these dimensions is a serious challenge, since there are many inherent sources of variation during lithography and etch processing. Coventor personnel, in conjunction with our colleagues from ASML and imec, recently looked at the impact of Extreme Ultraviolet lithography (EU... » read more

Defect Evolution In Next Generation, Extreme Ultraviolet Lithography


Extreme ultraviolet (EUV) lithography is a promising next generation lithography technology that may succeed optical lithography at future technology nodes. EUV mask infrastructure and manufacturing of defect-free EUV mask blanks is a key near term challenge in the use of EUV lithography. Virtual fabrication is a computerized technique to perform predictive, three dimensional modeling of sem... » read more

Speeding Up Process Optimization Using Virtual Fabrication


Author: Joseph Ervin Director, Semiconductor Process and Integration Lam Research Advanced CMOS scaling and new memory technologies have introduced increasingly complex structures into the device manufacturing process. For example, the increase in NAND memory layers has achieved greater vertical NAND scaling and higher memory density, but has led to challenges in high aspect ratio etch patte... » read more

Virtual Fabrication And Advanced Process Control Improve Yield For SAQP Process Assessment With 16nm Half-Pitch


This paper uses Virtual Fabrication to assess the Imec 7nm node (iN7) Self-Aligned Quadruple Patterning (SAQP) integration scheme for the 16nm half-pitch Metal 2 line formation. We first present the technical challenge of obtaining defect-free M2 lines with SAQP, and then provide a solution to achieve a » read more

Modeling Semiconductor Process Variation


3D semiconductors, 3D NAND Flash, FinFETS and other advanced devices are bringing tremendous opportunities to the semiconductor industry. Unfortunately, these devices are also bringing new design, process and production problems. Process variability has been a major contributor to production delays as feature sizes have decreased and process complexity has increased. Virtual fabrication is a co... » read more

Improving Patterning Yield At The 5nm Semiconductor Node


Engineering decisions are always data-driven. As scientists, we only believe in facts and not in intuition or feelings. At the manufacturing stage, the semiconductor industry is eager to provide data and facts to engineers based upon metrics such as the quantity of wafers produced per hour and sites/devices tested on each of those wafers. The massive quantity of data generated in semiconduct... » read more

Optimizing DRAM Development Using Directed Self-Assembly (DSA)


Directed Self-Assembly (DSA) is an emerging technology that has the ability to substantially improve lithographic manufacturing of semiconductor devices. In DSA, copolymer materials self-assemble to form nanoscale resolution patterns on the semiconductor substrate. DSA technologies hold the promise to substantially improve the resolution of existing lithographic processes (such as self-aligned ... » read more

Semiconductor Process Development: Finding A Faster Way To Profitability


Building a chip fabrication facility requires billions of dollars in investment for land, buildings, processing equipment, chemical and hazardous material safety, not to mention the deployment of hundreds of highly experienced process engineering and manufacturing personnel. Bringing up an advanced semiconductor process in any fab, new or established, is a several-hundred-million dollar effort,... » read more

New Techniques To Analyze And Reduce Etch Variation


Time division multiplex (TDM) plasma etch processes (commonly referred to as Deep Reactive ION Etching [“DRIE”]) use alternating deposition and etch steps cyclically to produce high aspect ratio structures on a silicon substrate. These etch processes have been widely applied in the manufacturing of silicon MEMS devices, and more recently in creating through silicon vias in 3D silicon struct... » read more

← Older posts Newer posts →