中文 English

Technical Paper Round-up: June 14


New technical papers added to Semiconductor Engineering’s library this week. [table id=33 /] Semiconductor Engineering is in the process of building this library of research papers. Please send suggestions (via comments section below) for what else you’d like us to incorporate. If you have research papers you are trying to promote, we will review them to see if they are a good fit f... » read more

Gallium Oxide Power Electronic Roadmap


New research paper addressing challenges in using gallium oxide. ABSTRACT "Gallium Oxide has undergone rapid technological maturation over the last decade, pushing it to the forefront of ultra-wide band gap semiconductor technologies. Maximizing the potential for a new semiconductor system requires a concerted effort by the community to address technical barriers which limit performance. Du... » read more

Parasitic Characterization Comes To Power Design Simulation


Two power design challenges are taking teams into unfamiliar territory. Wide bandgap (WBG) semiconductors target greater efficiency and density. Stricter EMI compliance regulations now come standard in mission-critical industries. Power design practices are still catching up. Simulation often takes a back seat to respinning hardware prototypes until success. What’s missing that could make sim... » read more

Review on Driving Circuits for Wide-Bandgap Semiconductor Switching Devices for Mid- to High-Power Applications


Abstract: "Wide-bandgap (WBG) material-based switching devices such as gallium nitride (GaN) high electron mobility transistors (HEMTs) and silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) are considered very promising candidates for replacing conventional silicon (Si) MOSFETs for various advanced power conversion applications, mainly because of their capabi... » read more

Revving Up SiC And GaN


Silicon carbide (SiC) and gallium nitride (GaN) are becoming more popular for power electronics, particularly in automotive applications, driving down costs as volumes scale up and increasing the demand for better tools to design, verify, and test these wide-bandgap devices. Both SiC and GaN are proving essential in areas such as battery management in electric vehicles. They can handle much ... » read more

Improved Performance of GaN-Based Ultraviolet LEDs with the Stair-like Si-Doping n-GaN Structure


Abstract "A method to improve the performance of ultraviolet light-emitting diodes (UV-LEDs) with stair-like Si-doping GaN layer is investigated. The high-resolution X-ray diffraction shows that the UV-LED with stair-like Si-doping GaN layer possesses better quality and a lower dislocation density. In addition, the experimental results demonstrate that light output power and wall plug effici... » read more

Gearing Up For Next-Gen Power Semis


After years in R&D, several vendors are moving closer to shipping power semiconductors and other products based on next-generation wide-bandgap technologies. These devices leverage the properties of new materials, such as aluminum nitride, diamond, and gallium oxide, and they are also utilized in different structures, such as vertical gallium-nitride power devices. But while many of thes... » read more

Gate Drive Solutions For CoolGaN 600 V HEMTs


This paper explains the gate drive requirements for Infineon’s CoolGaN 600 V e-mode HEMTs. Various driving solutions are discussed, ranging from the standard RC-coupled driver to a new differential drive concept utilizing dedicated gate driver ICs. In half-bridge topologies, a hybrid configuration combining isolated and non-isolated drivers could be an exciting alternative. Practical applicat... » read more

Going Vertical With GaN Devices


Gallium nitride has long been on the horizon for a variety of uses in semiconductors, but implementing this on a commercial scale has been relatively slow due to a variety of technical hurdles. That may be about to change. The wide bandgap of GaN makes it particularly attractive material for power conversion applications. Still, actually realizing its benefits in commercial devices has been ... » read more

Increasing The Conductive Density Of Packaging


Wide bandgap (WBG) semiconductor technologies have created new challenges and opportunities for power packages. Developments such as silicon carbide (SiC) and gallium nitride (GaN), have a higher figure of merit (FOM) compared to silicon MOSFETs and have extended the efficiency, output power and/or switching frequency range and operating temperature range for power electronics. With lower lo... » read more

← Older posts