Wide Band Gap—The Revolution In Power Semiconductors


New government regulations and industry standards are leading companies to adopt wide bandgap (WBG) power solutions, both to reduce their carbon footprint and to meet increasing demand for higher power systems aimed at electric vehicles, renewable energy, datacenters, and other markets. The automotive industry is one of the biggest markets driving demand for WBG power devices. The European U... » read more

GaN Power Semi Biz Heats Up


The market for devices based on gallium nitride (GaN) technology is heating up amid the push for faster and more power efficient systems. Today, [getkc id="217" kc_name="GaN"] is widely used in the production of LEDs. In addition, it is gaining steam in the radio-frequency (RF) market. And the GaN-based power semiconductor market finally appears ready to take off, after several false starts ... » read more

Will III-V Power Devices Happen?


In a previous blog post, I provided a review of the overall power device market and trends driving changes in device evolution that entail materials innovation. For the industry to make such a shift, the advantages over mature, low-cost silicon technologies must be compelling and something the industry absolutely has to implement. Now I’d like to focus on new materials offering competitive be... » read more

RF GaN Gains Steam


The RF [getkc id="217" kc_name="gallium nitride"] (GaN) device market is heating up amid the need for more performance with better power densities in a range of systems, such as infrastructure equipment, missile defense and radar. On one front, for example, RF GaN is beginning to displace a silicon-based technology for the power amplifier sockets in today’s wireless base stations. GaN is m... » read more

What Happened To GaN And SiC?


About five years ago, some chipmakers claimed that traditional silicon-based power MOSFETs had hit the wall, prompting the need for a new power transistor technology. At the time, some thought that two wide-bandgap technologies—gallium nitride (GaN) on silicon and silicon carbide (SiC) MOSFETs—would displace the ubiquitous power MOSFET. In addition, GaN and SiC were supposed to pose a t... » read more