中文 English

Revving Up SiC And GaN


Silicon carbide (SiC) and gallium nitride (GaN) are becoming more popular for power electronics, particularly in automotive applications, driving down costs as volumes scale up and increasing the demand for better tools to design, verify, and test these wide-bandgap devices. Both SiC and GaN are proving essential in areas such as battery management in electric vehicles. They can handle much ... » read more

Improved Performance of GaN-Based Ultraviolet LEDs with the Stair-like Si-Doping n-GaN Structure


Abstract "A method to improve the performance of ultraviolet light-emitting diodes (UV-LEDs) with stair-like Si-doping GaN layer is investigated. The high-resolution X-ray diffraction shows that the UV-LED with stair-like Si-doping GaN layer possesses better quality and a lower dislocation density. In addition, the experimental results demonstrate that light output power and wall plug effici... » read more

Gearing Up For Next-Gen Power Semis


After years in R&D, several vendors are moving closer to shipping power semiconductors and other products based on next-generation wide-bandgap technologies. These devices leverage the properties of new materials, such as aluminum nitride, diamond, and gallium oxide, and they are also utilized in different structures, such as vertical gallium-nitride power devices. But while many of thes... » read more

Gate Drive Solutions For CoolGaN 600 V HEMTs


This paper explains the gate drive requirements for Infineon’s CoolGaN 600 V e-mode HEMTs. Various driving solutions are discussed, ranging from the standard RC-coupled driver to a new differential drive concept utilizing dedicated gate driver ICs. In half-bridge topologies, a hybrid configuration combining isolated and non-isolated drivers could be an exciting alternative. Practical applicat... » read more

Going Vertical With GaN Devices


Gallium nitride has long been on the horizon for a variety of uses in semiconductors, but implementing this on a commercial scale has been relatively slow due to a variety of technical hurdles. That may be about to change. The wide bandgap of GaN makes it particularly attractive material for power conversion applications. Still, actually realizing its benefits in commercial devices has been ... » read more

Increasing The Conductive Density Of Packaging


Wide bandgap (WBG) semiconductor technologies have created new challenges and opportunities for power packages. Developments such as silicon carbide (SiC) and gallium nitride (GaN), have a higher figure of merit (FOM) compared to silicon MOSFETs and have extended the efficiency, output power and/or switching frequency range and operating temperature range for power electronics. With lower lo... » read more

Power Converter Chip Research Booms


Power electronics are booming, fueled by demand ranging from induction chargers for wearable and portable electronics, to charging stagings for electric vehicles. An estimated 80% of all U.S. electricity will pass through some form of power converter by 2030, said Yogesh Ramadass, director of power management at Texas Instruments' Kilby Labs. Transportation applications, in particular, deman... » read more

48V Applications Drive Power IC Package Options


The manufacturing process and die get most of the attention, but the packaging plays an important part in enabling and limiting performance, manufacturability, particularly when it comes to reliability of power devices. Given the wide range of underlying semiconductor power-device technologies — “basic” silicon, wide-bandgap silicon carbide (SiC) and gallium nitride (GaN), power levels... » read more

Improving Reliability For GaN And SiC


Suppliers of gallium nitride (GaN) and silicon carbide (SiC) power devices are rolling out the next wave of products with some new and impressive specs. But before these devices are incorporated in systems, they must prove to be reliable. As with previous products, suppliers are quick to point out that the new devices are reliable, although there are some issues that can occasionally surface... » read more

Power Semi Wars Begin


Several vendors are rolling out the next wave of power semiconductors based on gallium nitride (GaN) and silicon carbide (SiC), setting the stage for a showdown against traditional silicon-based devices in the market. Power semiconductors are specialized transistors that incorporate different and competitive technologies like GaN, SiC and silicon. Power semis operate as a switch in high-volt... » read more

← Older posts