Variation Issues Grow Wider And Deeper


Variation is becoming more problematic as chips become increasingly heterogeneous and as they are used in new applications and different locations, sparking concerns about how to solve these issues and what the full impact will be. In the past, variation in semiconductors was considered a foundry issue, typically at the most advanced process node, and largely ignored by most companies. New p... » read more

Fearless chip and fab tool forecasts


2019 is expected to be a challenging, if not confusing, year for the semiconductor and fab equipment industries. For example, Apple recently issued a warning about lackluster smartphone demand, which impacted several IC vendors and foundries. Then, the memory market is plummeting. In addition, the 10nm/7nm transition has proven to be difficult for many. And let’s not forget the geopolitica... » read more

Embedded Phase-Change Memory Emerges


The next-generation memory market for embedded applications is becoming more crowded as another technology emerges in the arena—embedded phase-change memory. Phase-change memory is not new and has been in the works for decades. But the technology has taken longer to commercialize amid a number of technical and cost challenges. Phase-change memory, a nonvolatile memory type that stores data... » read more

Analyzing Worst-Case Silicon Photonic Device Performance Through Process Modeling And Optical Simulation


Silicon photonics is an emerging and rapidly-expanding design platform that promises to enable higher-bandwidth communication and other applications. One of the best qualities of silicon photonics is its ability to leverage existing CMOS fabrication equipment and process flows. However, this means that it is subject to the same process defects and variations. Previous blog posts [References 1,2... » read more

Cobalt Enables Power and Performance Scaling at Single-Digit Logic Nodes


By Mehul Naik, Dec 17, 2018 Chip designers require simultaneous improvements in “PPAC”: power, performance and area/cost. Achieving these improvements is becoming increasingly difficult as classic Moore's Law scaling slows. What's needed is a new playbook for the industry consisting of new materials, new architectures, new 3D structures within the chip, new methods to shrink feature geome... » read more

Tech Brief: Much Ado About Memory


New semiconductor applications are ever changing and improving our lives, from new smartphones and wearables to healthcare, factory automation, and artificial intelligence. The humble memory chip working in the background plays a critical role in enabling these technologies. For example, that awesome picture you just took would be lost forever without memory. Your computer can’t perform the i... » read more

Keeping Up Power And Performance With Cobalt


Chip designers require simultaneous improvements in “PPAC”: power, performance and area/cost (Fig. 1). Achieving these improvements is becoming increasingly difficult as classic Moore's Law scaling slows. What's needed is a new playbook for the industry consisting of new materials, new architectures, new 3D structures within the chip, new methods to shrink feature geometries, and advanced p... » read more

Adaptation In A Volatile Era


2018 has been a volatile year by almost any measure, and the global electronics industry was at the center of the action. Soaring memory prices and tech stock valuations drove eye-popping growth in the first half, with Samsung solidifying its position as the world’s largest chipmaker and Apple briefly topping $1 trillion of market capitalization. Fast forward to the second half of the year an... » read more

Efforts to Suppress Nanosized Particles in Semiconductor Production Equipment


The currently dominant semiconductor process size is in the range between a few and a few dozen nanometers. That means if a nanosized-particle smaller than a virus (hereinafter simply “particle”) is present on a silicon substrate, it could cause a defect in the semiconductor device, lowering the production yield (i.e., the percentage of good chips produced in a manufacturing process).... » read more

What’s Next For AI, Quantum Chips


Semiconductor Engineering sat down to discuss the latest R&D trends with Luc Van den hove, president and chief executive of Imec; Emmanuel Sabonnadière, chief executive of Leti; and An Chen, executive director for the Nanoelectronics Research Initiative at the Semiconductor Research Corp. (SRC). Chen is on assignment from IBM. What follows are excerpts of those conversations, which took pl... » read more

← Older posts