Materials, Magnetism & Quantum Physics

For the past half-century, chipmakers have been following the same roadmap for improving performance in chips and reducing the cost of chips. That has proven tremendously effective in reducing costs and packing computing into a smaller space, allowing people to carry around what used to be a multi-million-dollar mainframe in their pocket. That approach is beginning to lose momentum. It's ge... » read more

Quantum Computing Becoming Real

Quantum computing will begin rolling out in increasingly useful ways over the next few years, setting the stage for what ultimately could lead to a shakeup in high-performance computing and eventually in the cloud. Quantum computing has long been viewed as some futuristic research project with possible commercial applications. It typically needs to run at temperatures close to absolute zero,... » read more

System Bits: June 5

The right squeeze for quantum computing In an effort to bring quantum computers closer to development, Hokkaido University and Kyoto University researchers have developed a theoretical approach to quantum computing that is 10 billion times more tolerant to errors than current theoretical models. The team said their method may lead to quantum computers that use the diverse properties of sub... » read more

Manufacturing Bits: May 29

Utilizing Heat For Energy One of the big problems in electronics in general, and semiconductors particular, is heat. And it's not just about leakage current anymore. Heat is a problem at every level, from circuit design to the materials being used inside the chips, as well as warpage between die caused by heat after they are packaged together. Heat can prematurely age chips as well as destroy ... » read more

200mm Fab Crunch

Growing demand for analog, MEMS and RF chips continues to cause acute shortages for both 200mm fab capacity and equipment, and it shows no sign of letting up. Today, 200mm fab capacity is tight with a similar situation projected for the second half of 2018 and perhaps well into 2019. In fact, 2018 will likely represent the third consecutive year that 200mm fab capacity will be tight. The sam... » read more

System Bits: May 8

Unlocking the brain Stanford University researchers recently reminded that for years, the people developing artificial intelligence drew inspiration from what was known about the human brain, and now AI is starting to return the favor: while not explicitly designed to do so, certain AI systems seem to mimic our brains’ inner workings more closely than previously thought. [caption id="attach... » read more

Software-Defined Test And Measurement

Software-defined radios, instrumentation and test are ramping up alongside a flood of new technologies related to assisted and autonomous vehicles, 5G, and military/aerospace electronics, breathing new life and significant change into the test and measurement market. Software-defined test adds flexibility in markets where the products and protocols are evolving or still being defined, and wh... » read more

Do Superconducting Processors Really Need Cryogenic Memories?

Cryogenic, superconducting digital processors offer the promise of greatly reduced operating power for server-class computing systems. This is due to the exceptionally low energy per operation of Single Flux Quantum circuits built from Josephson junction devices operating at the temperature of 4 Kelvin. Unfortunately, no suitable same-temperature memory technology yet exists to complement these... » read more

System Bits: April 3

Investigating the human brain for quantum computation potential While much has been made of quantum computing processes using ultracold atoms and ions, superconducting junctions and defects in diamonds, researchers are questioning if this could be performed in human brains. In fact, UC Santa Barbara theoretical physicist Matthew Fisher has been asking this question for years. And now as scient... » read more

System Bits: March 13

Wiring quantum computers According to MIT researchers, when we talk about “information technology,” we generally mean the technology part, like computers, networks, and software. But they reminded that the information itself, and its behavior in quantum systems, is a central focus for MIT’s interdisciplinary Quantum Engineering Group (QEG) as it seeks to develop quantum computing and oth... » read more

← Older posts