System Bits: Nov. 1


There is a lurking malice in cloud hosting services A team of researchers from the Georgia Institute of Technology, Indiana University Bloomington, and the University of California Santa Barbara has found — as part of a study of 20 major cloud hosting services — that as many as 10 percent of the repositories hosted by them had been compromised, with several hundred of the ‘buckets’ act... » read more

System Bits: Oct. 25


Scalable quantum computers In what they say is a significant step towards to the realization of a scalable quantum computer, researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits. The quantum socket is a wiring method that uses 3D based on spring-lo... » read more

System Bits: Oct. 18


First quantum computer bridge Quantum computing is closer than we think. For the first time on a single chip, Sandia National Laboratories and Harvard University researchers have shown all the components needed to create a quantum bridge to link quantum computers together by forcefully embedding two silicon atoms in a diamond matrix. Sandia researcher Ryan Camacho pointed out that small qua... » read more

Changing Economics In Chip Manufacturing


The foundry and equipment businesses are poised for significant changes that could affect the balance of power far beyond just the semiconductor manufacturing sector. It’s no secret that the number of companies developing new chips at 7nm is shrinking. There will be even fewer at 5nm. The business case for moving forward is that density must provide a competitive edge. But that density imp... » read more

System Bits: Aug. 16


Record-breaking quantum logic gate Reaching the benchmark required theoretically to build a quantum computer, University of Oxford researchers have achieved a quantum logic gate with record-breaking 99.9% precision. They reminded that quantum computers, which function according to the laws of quantum physics, have the potential to dwarf the processing power of today's computers, able to pro... » read more

System Bits: Aug. 9


Using trapped ions as quantum bits MIT researchers reminded that quantum computers are largely hypothetical devices that could perform some calculations much more rapidly than conventional computers can, and instead of the bits of classical computation — which can represent 0 or 1 — quantum computers consist of quantum bits, or qubits, which can, in some sense, represent 0 and 1 simultaneo... » read more

System Bits: June 28


Deep-learning-based virtual reality tool Given that future systems which enable people to interact with virtual environments will require computers to interpret the human hand’s nearly endless variety and complexity of changing motions and joint angles, Purdue University researchers have created a convolutional neural network-based system that is capable of deep learning. [caption id="att... » read more

Quantum Computing Breakthrough


An earlier series of articles on quantum computing discussed the differences between the gate logic model and the quantum annealing model. The gate logic model, like transistor logic, uses a limited number of “gates” to construct a general purpose computer, theoretically capable of solving any problem for which a suitable algorithm can be found. In systems designed around the gate logic mod... » read more

Power/Performance Bits: March 22


Superconducting memory A group of scientists from the Moscow Institute of Physics and Technology and the Moscow State University developed a fundamentally new type of memory cell based on superconductors, which they believe will be able to work hundreds of times faster than memory devices commonly used today. The basic memory cells are based on quantum effects in "sandwiches" of supercond... » read more

The Quantum IoE


The principle of quantum communication (QC) is that it can transfer a quantum state between locations. The significance of that cannot be overstated. This is what we can look to for the delivery of the super-secure communications networks of the future. This kind of secure communications is made to order for the IoE (and, of course, many other platforms). No matter how simple or complex the ... » read more

← Older posts