Power/Performance Bits: Feb. 21


Harvesting energy from multiple sources Researchers from the University of Oulu in Finland found a particular type of perovskite, KBNNO, has the right properties to extract energy from multiple sources simultaneously. While perovskites are particularly known for their use as solar cells, certain minerals in the perovskite family show piezoelectric and pyroelectric (harvesting energy from ... » read more

Rush Hour On The Technology Roadmap


Starting this week, the International Solid State Circuits Conference (ISSCC) will commence at the Marriott in downtown San Francisco. This prestigious conference showcases the latest semiconductor innovations from around the world. Looking at the advance program, one can’t help but notice a shift in the work presented. The conference theme this year is: “Intelligent Chips for a Smart World... » read more

Changing Direction In Chip Design


Andrzej Strojwas, chief technologist at PDF Solutions and professor of electrical and computer engineering at Carnegie Mellon University—and the winner of this year's Phil Kaufman Award for distinguished contributions to EDA—sat down with Semiconductor Engineering to talk about device scaling, why the semiconductor industry will begin to fragment around new architectures and packaging, and ... » read more

What’s Next For Transistors


The IC industry is moving in several different directions at once. The largest chipmakers continue to march down process nodes with chip scaling, while others are moving towards various advanced packaging schemes. On top of that, post-CMOS devices, neuromorphic chips and quantum computing are all in the works. Semiconductor Engineering sat down to discuss these technologies with Marie Semeri... » read more

System Bits: Jan. 17


Turning quantum systems from novelties into useful technologies In what is believed to be a major achievement that could help bring the strange and powerful world of quantum technology closer to reality, University of Sydney researchers have demonstrated the ability to “see” the future of quantum systems, and used that knowledge to preempt their demise. The applications of quantum-enabl... » read more

Coherence Times Of Bose-Einstein Condensates Beyond The Shot-Noise Limit Via Superfluid Shielding


Source: Cornell University Library 10/26/16 "We demonstrate a new way to extend the coherence time of separated Bose-Einstein condensates that involves immersion into a superfluid bath. When both the system and the bath have similar scattering lengths, immersion in a superfluid bath cancels out inhomogeneous potentials either imposed by external fields or inherent in density fluctuations due... » read more

System Bits: Dec. 20


Removing quasiparticles from superconducting quantum circuits improves lifetime Given that an important prerequisite for the realization of high-performance quantum computers is that the stored data should remain intact for as long as possible, an international team of scientists at European interdisciplinary research institute Forschungszentrum Jülich has succeeded in making further improvem... » read more

System Bits: Nov. 1


There is a lurking malice in cloud hosting services A team of researchers from the Georgia Institute of Technology, Indiana University Bloomington, and the University of California Santa Barbara has found — as part of a study of 20 major cloud hosting services — that as many as 10 percent of the repositories hosted by them had been compromised, with several hundred of the ‘buckets’ act... » read more

System Bits: Oct. 25


Scalable quantum computers In what they say is a significant step towards to the realization of a scalable quantum computer, researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits. The quantum socket is a wiring method that uses 3D based on spring-lo... » read more

System Bits: Oct. 18


First quantum computer bridge Quantum computing is closer than we think. For the first time on a single chip, Sandia National Laboratories and Harvard University researchers have shown all the components needed to create a quantum bridge to link quantum computers together by forcefully embedding two silicon atoms in a diamond matrix. Sandia researcher Ryan Camacho pointed out that small qua... » read more

← Older posts